Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation

Abstract

Krüppel-like factor 4 (KLF4, GKLF) is a zinc-finger transcription factor involved in a large variety of cellular processes, including apoptosis, cell cycle progression, as well as stem cell renewal. KLF4 is critical for cell fate decision and has an ambivalent role in tumorigenesis. Emerging data keep reminding us that KLF4 dysregulation either facilitates or impedes tumor progression, making it important to clarify the regulating network of KLF4. Like most transcription factors, KLF4 has a rather short half-life within the cell and its turnover must be carefully orchestrated by ubiquitination and ubiquitin–proteasome system. To better understand the mechanism of KLF4 ubiquitination, we performed a genome-wide screen of E3 ligase small interfering RNA library based on western blot and identified SCF-FBXO32 to be a new E3 ligase, which is responsible for KLF4 ubiquitination and degradation. The F-box domain is critical for FBXO32-dependent KLF4 ubiquitination and degradation. Furthermore, we demonstrated that FBXO32 physically interacts with the N-terminus (1–60 aa) of KLF4 via its C-terminus (228–355 aa) and directly targets KLF4 for ubiquitination and degradation. We also found out that p38 mitogen-activated protein kinase pathway may be implicated in FBXO32-mediated ubiquitination of KLF4, as p38 kinase inhibitor coincidently abrogates endogenous KLF4 ubiquitination and degradation, as well as FBXO32-dependent exogenous KLF4 ubiquitination and degradation. Finally, FBXO32 inhibits colony formation in vitro and primary tumor initiation and growth in vivo through targeting KLF4 into degradation. Our findings thus further elucidate the tumor-suppressive function of FBXO32 in breast cancer. These results expand our understanding of the posttranslational modification of KLF4 and of its role in breast cancer development and provide a potential target for diagnosis and therapeutic treatment of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B . A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 1996; 271: 31384–31390.

    Article  CAS  PubMed  Google Scholar 

  2. Rowland BD, Peeper DS . KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 2006; 6: 11–23.

    Article  CAS  PubMed  Google Scholar 

  3. Ghaleb AM, Katz JP, Kaestner KH, Du JX, Yang VW . Kruppel-like factor 4 exhibits antiapoptotic activity following gamma-radiation-induced DNA damage. Oncogene 2007; 26: 2365–2373.

    Article  CAS  PubMed  Google Scholar 

  4. McConnell BB, Yang VW . Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010; 90: 1337–1381.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  6. Shields JM, Christy RJ, Yang VW . Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 1996; 271: 20009–20017.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 2000; 275: 18391–18398.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon HS, Ghaleb AM, Nandan MO, Hisamuddin IM, Dalton WB, Yang VW . Kruppel-like factor 4 prevents centrosome amplification following gamma-irradiation-induced DNA damage. Oncogene 2005; 24: 4017–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC . Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 2000; 28: 2969–2976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon HS, Yang VW . Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 2004; 279: 5035–5041.

    Article  CAS  PubMed  Google Scholar 

  11. Rowland BD, Bernards R, Peeper DS . The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005; 7: 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Q, Hong Y, Zhan Q, Shen Y, Liu Z . Role for Kruppel-like factor 4 in determining the outcome of p53 response to DNA damage. Cancer Res 2009; 69: 8284–8292.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW . Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 2004; 23: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei D, Kanai M, Huang S, Xie K . Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 2006; 27: 23–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wang N, Liu ZH, Ding F, Wang XQ, Zhou CN, Wu M . Down-regulation of gut-enriched Kruppel-like factor expression in esophageal cancer. World J Gastroenterol 2002; 8: 966–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tetreault MP, Yang Y, Travis J, Yu QC, Klein-Szanto A, Tobias JW et al. Esophageal squamous cell dysplasia and delayed differentiation with deletion of kruppel-like factor 4 in murine esophagus. Gastroenterology 2010; 139: e179.

    Google Scholar 

  17. Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun 2003; 308: 251–256.

    Article  CAS  PubMed  Google Scholar 

  18. Hu W, Hofstetter WL, Li H, Zhou Y, He Y, Pataer A et al. Putative tumor-suppressive function of Kruppel-like factor 4 in primary lung carcinoma. Clin Cancer Res 2009; 15: 5688–5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei D, Wang L, Yan Y, Jia Z, Gagea M, Li Z et al. KLF4 is essential for induction of cellular identity change and acinar-to-ductal reprogramming during early pancreatic carcinogenesis. Cancer Cell 2016; 29: 324–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foster KW, Frost AR, McKie-Bell P, Lin CY, Engler JA, Grizzle WE et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res 2000; 60: 6488–6495.

    CAS  PubMed  Google Scholar 

  21. Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30: 2161–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu D, Wan Y . Regulation of Kruppel-like factor 4 by the anaphase promoting complex pathway is involved in TGF-beta signaling. J Biol Chem 2011; 286: 6890–6901.

    Article  CAS  PubMed  Google Scholar 

  23. Kim MO, Kim SH, Cho YY, Nadas J, Jeong CH, Yao K et al. ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. Nat Struct Mol Biol 2012; 19: 283–290.

    Article  CAS  PubMed  Google Scholar 

  24. Gamper AM, Qiao X, Kim J, Zhang L, DeSimone MC, Rathmell WK et al. Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Mol Cell 2012; 45: 233–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu D, Zhou Z, Davidson NE, Huang Y, Wan Y . Novel insight into KLF4 proteolytic regulation in estrogen receptor signaling and breast carcinogenesis. J Biol Chem 2012; 287: 13584–13597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL . Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001; 98: 14440–14445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kipreos ET, Pagano M . The F-box protein family. Genome Biol 2000; 1: REVIEWS3002.1–REVIEWS3002.7.

    Article  Google Scholar 

  28. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294: 1704–1708.

    Article  CAS  PubMed  Google Scholar 

  29. Skaar JR, Pagan JK, Pagano M . SnapShot: F box proteins I. Cell 2009; 137: 1160–1160 e1161.

    Article  CAS  PubMed  Google Scholar 

  30. Jogo M, Shiraishi S, Tamura TA . Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett 2009; 583: 2715–2719.

    Article  CAS  PubMed  Google Scholar 

  31. Chou JL, Su HY, Chen LY, Liao YP, Hartman-Frey C, Lai YH et al. Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest 2010; 90: 414–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo W, Zhang M, Guo Y, Shen S, Guo X, Dong Z . FBXO32, a new TGF-beta/Smad signaling pathway target gene, is epigenetically inactivated in gastric cardia adenocarcinoma. Neoplasma 2015; 62: 646–657.

    Article  CAS  PubMed  Google Scholar 

  33. Mei Z, Zhang D, Hu B, Wang J, Shen X, Xiao W . FBXO32 targets c-Myc for proteasomal degradation and inhibits c-Myc activity. J Biol Chem 2015; 290: 16202–16214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen ZY, Wang X, Zhou Y, Offner G, Tseng CC . Destabilization of Kruppel-like factor 4 protein in response to serum stimulation involves the ubiquitin-proteasome pathway. Cancer Res 2005; 65: 10394–10400.

    Article  CAS  PubMed  Google Scholar 

  35. Sarikas A, Hartmann T, Pan ZQ . The cullin protein family. Genome Biol 2011; 12: 220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardozo T, Pagano M . The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 2004; 5: 739–751.

    Article  CAS  PubMed  Google Scholar 

  37. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Z, Lee ST, Qiao Y, Li Z, Lee PL, Lee YJ et al. Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death Differ 2011; 18: 1771–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 2005; 24: 1491–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shie JL, Chen ZY, O'Brien MJ, Pestell RG, Lee ME, Tseng CC . Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation. Am J Physiol Gastrointest Liver Physiol 2000; 279: G806–G814.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell 2014; 26: 358–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian X, Dai S, Sun J, Jin G, Jiang S, Meng F et al. F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression. Oncotarget 2015; 6: 22767–22775.

    PubMed  PubMed Central  Google Scholar 

  43. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005; 19: 362–370.

    Article  CAS  PubMed  Google Scholar 

  44. Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G et al. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PloS One 2012; 7: e46668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner EF, Nebreda AR . Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537–549.

    Article  CAS  PubMed  Google Scholar 

  46. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.

    Article  CAS  PubMed  Google Scholar 

  47. Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 2007; 39: 741–749.

    Article  CAS  PubMed  Google Scholar 

  48. Ventura JJ, Tenbaum S, Perdiguero E, Huth M, Guerra C, Barbacid M et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet 2007; 39: 750–758.

    Article  CAS  PubMed  Google Scholar 

  49. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 2001; 65: 101–110.

    Article  CAS  PubMed  Google Scholar 

  50. Luo A, Yu X, Li G, Ma G, Chen H, Ding F et al. Differentiation-associated genes regulated by c-Jun and decreased in the progression of esophageal squamous cell carcinoma. PloS One 2014; 9: e96610.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by National Natural Science Foundation of China (81130043 and 81420108025) and grants from the Ministry of Science and Technology (2016YFC1302100 and 2013CB911004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Li or Z Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liu, Y., Zhu, R. et al. FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene 36, 3312–3321 (2017). https://doi.org/10.1038/onc.2016.479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.479

This article is cited by

Search

Quick links