Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rho GTPases: Anti- or pro-neoplastic targets?

Abstract

Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumours. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Hall A . Rho family GTPases. Biochem Soc Trans 2012; 40: 1378–1382.

    CAS  PubMed  Google Scholar 

  2. Rojas AM, Fuentes G, Rausell A, Valencia A . The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 2012; 196: 189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cherfils J, Zeghouf M . Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93: 269–309.

    CAS  PubMed  Google Scholar 

  4. Boulter E, Garcia-Mata R . RhoGDI: A rheostat for the Rho switch. Small GTPases 2010; 1: 65–68.

    PubMed  PubMed Central  Google Scholar 

  5. Etienne-Manneville S, Hall A . Rho GTPases in cell biology. Nature 2002; 420: 629–635.

    CAS  PubMed  Google Scholar 

  6. Orgaz JL, Herraiz C, Sanz-Moreno V . Rho GTPases modulate malignant transformation of tumor cells. Small GTPases 2014; 5: e29019.

    PubMed  PubMed Central  Google Scholar 

  7. Li H, Peyrollier K, Kilic G, Brakebusch C . Rho GTPases and cancer. Biofactors 2014; 40: 226–235.

    CAS  PubMed  Google Scholar 

  8. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ . Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol 1995; 15: 6443–6453.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qiu RG, Chen J, Kirn D, McCormick F, Symons M . An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    CAS  PubMed  Google Scholar 

  10. Qiu RG, Chen J, McCormick F, Symons M . A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92: 11781–11785.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Miralles F, Posern G, Zaromytidou AI, Treisman R . Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 2003; 113: 329–342.

    CAS  PubMed  Google Scholar 

  12. Bar-Sagi D, Hall A . Ras and Rho GTPases: a family reunion. Cell 2000; 103: 227–238.

    CAS  PubMed  Google Scholar 

  13. Mitin N, Rossman KL, Der CJ . Signaling interplay in Ras superfamily function. Curr Biol 2005; 15: R563–R574.

    CAS  PubMed  Google Scholar 

  14. Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 2002; 4: 621–625.

    CAS  PubMed  Google Scholar 

  15. Welch HC . Regulation and function of P-Rex family Rac-GEFs. Small GTPases 2015; 6: 49–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ridley AJ . Rho proteins and cancer. Breast Cancer Res Treat 2004; 84: 13–19.

    CAS  PubMed  Google Scholar 

  17. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    CAS  PubMed  Google Scholar 

  18. Karlsson R, Pedersen ED, Wang Z, Brakebusch C . Rho GTPase function in tumorigenesis. Biochim Biophys Acta 2009; 1796: 91–98.

    CAS  PubMed  Google Scholar 

  19. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8: 23.

    PubMed  PubMed Central  Google Scholar 

  20. Ridley AJ . RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc 2013; 251: 242–249.

    CAS  PubMed  Google Scholar 

  21. Barrio-Real L, Kazanietz MG . Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci Signal 2012; 5: pe43.

    PubMed  Google Scholar 

  22. Cook DR, Rossman KL, Der CJ . Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2014; 33: 4021–4035.

    CAS  PubMed  Google Scholar 

  23. Vigil D, Cherfils J, Rossman KL, Der CJ . Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10: 842–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Y, Zheng Y . Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin Drug Discov 2015; 10: 991–1010.

    PubMed  PubMed Central  Google Scholar 

  25. Porter AP, Papaioannou A, Malliri A . Deregulation of Rho GTPases in cancer. Small GTPases 2016. 1–16.

  26. Alan JK, Lundquist EA . Mutationally activated Rho GTPases in cancer. Small GTPases 2013; 4: 159–163.

    PubMed  PubMed Central  Google Scholar 

  27. Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AK et al. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6: 123–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bustelo XR, Sauzeau V, Berenjeno IM . GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 2007; 29: 356–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heasman SJ, Ridley AJ . Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9: 690–701.

    CAS  PubMed  Google Scholar 

  30. Zhou X, Zheng Y . Cell type-specific signaling function of RhoA GTPase: lessons from mouse gene targeting. J Biol Chem 2013; 288: 36179–36188.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brumby AM, Goulding KR, Schlosser T, Loi S, Galea R, Khoo P et al. Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 2011; 188: 105–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 2012; 149: 642–655.

    CAS  PubMed  Google Scholar 

  33. Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai YR et al. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov 2013; 3: 444–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang SY, Tang QL, Xu F, Xue Y, Zhen ZP, Deng Y et al. RhoA regulates G(1)-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol Cancer Res 2009; 7: 570–580.

    CAS  PubMed  Google Scholar 

  35. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet 2014; 46: 583–587.

    CAS  PubMed  Google Scholar 

  36. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 2014; 46: 573–582.

    CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513: 202–209.

    Google Scholar 

  38. Rocken C, Behrens HM, Boger C, Kruger S . Clinicopathological characteristics of RHOA mutations in a Central European gastric cancer cohort. J Clin Pathol 2016; 69: 70–75.

    PubMed  Google Scholar 

  39. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014; 46: 166–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 2014; 46: 171–175.

    CAS  PubMed  Google Scholar 

  41. Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 2014; 46: 371–375.

    CAS  PubMed  Google Scholar 

  42. Manso R, Sanchez-Beato M, Monsalvo S, Gomez S, Cereceda L, Llamas P et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood 2014; 123: 2893–2894.

    CAS  PubMed  Google Scholar 

  43. Nagata Y, Kontani K, Enami T, Kataoka K, Ishii R, Totoki Y et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 2016; 127: 596–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohde M, Richter J, Schlesner M, Betts MJ, Claviez A, Bonn BR et al. Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols. Genes Chromosomes Cancer 2014; 53: 911–916.

    CAS  PubMed  Google Scholar 

  45. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 2005; 19: 1974–1979.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B . Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 2002; 87: 635–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med (Berl) 2007; 85: 1149–1156.

    CAS  Google Scholar 

  50. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 2007; 67: 8089–8094.

    CAS  PubMed  Google Scholar 

  51. Samuel MS, Lourenco FC, Olson MF . K-Ras mediated murine epidermal tumorigenesis is dependent upon and associated with elevated Rac1 activity. PLoS One 2011; 6: e17143.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 2010; 29: 3362–3373.

    CAS  PubMed  Google Scholar 

  53. Wu CY, Carpenter ES, Takeuchi KK, Halbrook CJ, Peverley LV, Bien H et al. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Gastroenterology 2014; 147: e1407.

    Google Scholar 

  54. Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A et al. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 2011; 118: 5235–5245.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nohata N, Uchida Y, Stratman AN, Adams RH, Zheng Y, Weinstein BM et al. Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis. Dev Biol 2016; 411: 183–194.

    CAS  PubMed  Google Scholar 

  56. Frances D, Sharma N, Pofahl R, Maneck M, Behrendt K, Reuter K et al. A role for Rac1 activity in malignant progression of sebaceous skin tumors. Oncogene 2015; 34: 5505–5512.

    CAS  PubMed  Google Scholar 

  57. Stengel KR, Zheng Y . Essential role of Cdc42 in Ras-induced transformation revealed by gene targeting. PLoS One 2012; 7: e37317.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakamori R, Yu S, Zhang X, Hoffman A, Sun J, Das S et al. CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Res 2014; 74: 5480–5492.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E . Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999; 18: 6835–6839.

    CAS  PubMed  Google Scholar 

  60. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436: 123–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Silva AL, Carmo F, Bugalho MJ . RAC1b overexpression in papillary thyroid carcinoma: a role to unravel. Eur J Endocrinol 2013; 168: 795–804.

    CAS  PubMed  Google Scholar 

  62. Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ . Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 2004; 23: 9369–9380.

    CAS  PubMed  Google Scholar 

  63. Matos P, Oliveira C, Velho S, Goncalves V, da Costa LT, Moyer MP et al. B-Raf(V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology 2008; 135: 899–906.

    CAS  PubMed  Google Scholar 

  64. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P et al. The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. Oncogene 2013; 32: 903–909.

    CAS  PubMed  Google Scholar 

  65. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2016; 34: 155–163.

    CAS  PubMed  Google Scholar 

  68. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485: 502–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518: 495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Robles AI, Traverso G, Zhang M, Roberts NJ, Khan MA, Joseph C et al. Whole-exome sequencing analyses of inflammatory bowel disease-associated colorectal cancers. Gastroenterology 2016; 150: 931–943.

    CAS  PubMed  Google Scholar 

  71. Lissanu Deribe Y, Shi Y, Rai K, Nezi L, Amin SB, Wu CC et al. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma. Proc Natl Acad Sci USA 2016; 113: E1296–E1305.

    PubMed  PubMed Central  Google Scholar 

  72. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015; 47: 1304–1315.

    CAS  PubMed  Google Scholar 

  73. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 2016; 48: 607–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boddicker RL, Razidlo GL, Dasari S, Zeng Y, Hu G, Knudson RA et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood 2016; 128: 1234–1245.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 2009; 69: 6660–6667.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kumar RD, Swamidass SJ, Bose R . Unsupervised detection of cancer driver mutations with parsimony-guided learning. Nat Genet 2016; 48: 1288–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 2009; 325: 1261–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cullis J, Meiri D, Sandi MJ, Radulovich N, Kent OA, Medrano M et al. The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 2014; 25: 181–195.

    CAS  PubMed  Google Scholar 

  79. Morgan-Fisher M, Wewer UM, Yoneda A . Regulation of ROCK activity in cancer. J Histochem Cytochem 2013; 61: 185–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rath N, Olson MF . Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012; 13: 900–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J . Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64: 259–278.

    CAS  Google Scholar 

  82. Kumper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A et al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife 2016; 5: e12203.

    PubMed  PubMed Central  Google Scholar 

  83. Feng Y, LoGrasso PV, Defert O, Li R, Rho Kinase (ROCK) . Inhibitors and their therapeutic potential. J Med Chem 2016; 59: 2269–2300.

    CAS  PubMed  Google Scholar 

  84. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408: 297–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R . Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene 2010; 29: 2441–2448.

    CAS  PubMed  Google Scholar 

  86. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 2013; 153: 1050–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH et al. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 2012; 47: 281–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumar R, Gururaj AE, Barnes CJ . p21-activated kinases in cancer. Nat Rev Cancer 2006; 6: 459–471.

    CAS  PubMed  Google Scholar 

  89. Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA et al. p21-activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res 2012; 72: 5966–5975.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC, Desai R et al. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J Pathol 2014; 234: 502–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Prendergast GC . Actin′ up: RhoB in cancer and apoptosis. Nat Rev Cancer 2001; 1: 162–168.

    CAS  PubMed  Google Scholar 

  92. Riou P, Villalonga P, Ridley AJ . Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays 2010; 32: 986–992.

    CAS  PubMed  Google Scholar 

  93. Aspenstrom P, Ruusala A, Pacholsky D . Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313: 3673–3679.

    PubMed  Google Scholar 

  94. Chew TW, Liu XJ, Liu L, Spitsbergen JM, Gong Z, Low BC . Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 2014; 33: 2717–2727.

    CAS  PubMed  Google Scholar 

  95. Forti FL, Armelin HA . Vasopressin triggers senescence in K-ras transformed cells via RhoA-dependent downregulation of cyclin D1. Endocr Relat Cancer 2007; 14: 1117–1125.

    CAS  PubMed  Google Scholar 

  96. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002; 22: 8467–8477.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodrigues P, Macaya I, Bazzocco S, Mazzolini R, Andretta E, Dopeso H et al. RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nat Commun 2014; 5: 5458.

    CAS  PubMed  Google Scholar 

  98. Zandvakili I, Davis AK, Hu G, Zheng Y . Loss of RhoA exacerbates, rather than dampens, oncogenic K-Ras induced lung adenoma formation in mice. PLoS One 2015; 10: e0127923.

    PubMed  PubMed Central  Google Scholar 

  99. Zhou J, Hayakawa Y, Wang TC, Bass AJ . RhoA mutations identified in diffuse gastric cancer. Cancer Cell 2014; 26: 9–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chiba S, Enami T, Ogawa S, Sakata-Yanagimoto M . G17V RHOA: genetic evidence of GTP-unbound RHOA playing a role in tumorigenesis in T cells. Small GTPases 2015; 6: 100–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gilbert-Ross M, Marcus AI, Zhou W . RhoA, a novel tumor suppressor or oncogene as a therapeutic target? Genes Dis 2015; 2: 2–3.

    CAS  PubMed  Google Scholar 

  102. Ishikawa S . Opposite RHOA functions within the ATLL category. Blood 2016; 127: 524–525.

    CAS  PubMed  Google Scholar 

  103. Maeda M, Ushijima T . RHOA mutation may be associated with diffuse-type gastric cancer progression, but is it gain or loss? Gastric Cancer 2016; 19: 326–328.

    PubMed  Google Scholar 

  104. O'Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis CM, Drummond RA et al. Inactivating mutations in GNA13 and RHOA in Burkitt’s lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Galpha13/RhoA axis in B cells. Oncogene 2016; 35: 3771–3780.

    CAS  PubMed  Google Scholar 

  105. Sahai E, Alberts AS, Treisman R . RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J 1998; 17: 1350–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bousquet E, Mazieres J, Privat M, Rizzati V, Casanova A, Ledoux A et al. Loss of RhoB expression promotes migration and invasion of human bronchial cells via activation of AKT1. Cancer Res 2009; 69: 6092–6099.

    CAS  PubMed  Google Scholar 

  107. Mazieres J, Antonia T, Daste G, Muro-Cacho C, Berchery D, Tillement V et al. Loss of RhoB expression in human lung cancer progression. Clin Cancer Res 2004; 10: 2742–2750.

    CAS  PubMed  Google Scholar 

  108. Sato N, Fukui T, Taniguchi T, Yokoyama T, Kondo M, Nagasaka T et al. RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line. Int J Cancer (Journal international du cancer) 2007; 120: 543–551.

    CAS  Google Scholar 

  109. Wheeler AP, Ridley AJ . Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 2004; 301: 43–49.

    CAS  PubMed  Google Scholar 

  110. Huang M, Prendergast GC . RhoB in cancer suppression. Histol Histopathol 2006; 21: 213–218.

    CAS  PubMed  Google Scholar 

  111. Liu AX, Rane N, Liu JP, Prendergast GC . RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 2001; 21: 6906–6912.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Meyer N, Peyret-Lacombe A, Canguilhem B, Medale-Giamarchi C, Mamouni K, Cristini A et al. RhoB promotes cancer initiation by protecting keratinocytes from UVB-induced apoptosis but limits tumor aggressiveness. J Invest Dermatol 2014; 134: 203–212.

    CAS  PubMed  Google Scholar 

  113. Yang L, Wang L, Kalfa TA, Cancelas JA, Shang X, Pushkaran S et al. Cdc42 critically regulates the balance between myelopoiesis and erythropoiesis. Blood 2007; 110: 3853–3861.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. van Hengel J, D’Hooge P, Hooghe B, Wu X, Libbrecht L, De Vos R et al. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology 2008; 134: 781–792.

    CAS  PubMed  Google Scholar 

  115. Melendez J, Liu M, Sampson L, Akunuru S, Han X, Vallance J et al. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice. Gastroenterology 2013; 145: 808–819.

    CAS  PubMed  Google Scholar 

  116. Croise P, Houy S, Gand M, Lanoix J, Calco V, Toth P et al. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression. Endocr Relat Cancer 2016; 23: 281–293.

    CAS  PubMed  Google Scholar 

  117. Grogg M, Zheng Y, Rho GTPase-activating proteins in cancer. In: Golen KV (ed). The Rho GTPases in Cancer. 2010 edn. Springer Publisher: New York, NY, USA, 2010, pp 93–110.

    Google Scholar 

  118. Braun AC, Olayioye MA . Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27: 1643–1651.

    CAS  PubMed  Google Scholar 

  119. Wang D, Qian X, Rajaram M, Durkin ME, Lowy DR . DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers. Oncotarget 2016; 7: 45144–45157.

    PubMed  PubMed Central  Google Scholar 

  120. Lin M, van Golen KL . Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat 2004; 84: 49–60.

    CAS  PubMed  Google Scholar 

  121. Heckman-Stoddard BM, Vargo-Gogola T, McHenry PR, Jiang V, Herrick MP, Hilsenbeck SG et al. Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression. Breast Cancer Res 2009; 11: R61.

    PubMed  PubMed Central  Google Scholar 

  122. Lawson CD, Fan C, Mitin N, Baker NM, George SD, Graham DM et al. Rho GTPase transcriptome analysis reveals oncogenic roles for Rho GTPase-activating proteins in basal-like breast cancers. Cancer Res 2016; 76: 3826–3837.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Harding MA, Theodorescu D . RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 2010; 46: 1252–1259.

    CAS  PubMed  Google Scholar 

  124. Garcia-Mata R, Boulter E, Burridge K . The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12: 493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002; 2: 76–84.

    CAS  PubMed  Google Scholar 

  126. Zhao L, Wang H, Li J, Liu Y, Ding Y . Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. J Proteome Res 2008; 7: 3994–4003.

    CAS  PubMed  Google Scholar 

  127. Zhao L, Wang H, Sun X, Ding Y . Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma. FEBS J 2010; 277: 4195–4204.

    CAS  PubMed  Google Scholar 

  128. Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F et al. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin Exp Metastasis 2002; 19: 9–15.

    CAS  PubMed  Google Scholar 

  129. Abiatari I, DeOliveira T, Kerkadze V, Schwager C, Esposito I, Giese NA et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol Cancer Ther 2009; 8: 1494–1504.

    CAS  PubMed  Google Scholar 

  130. Koide N, Yamada T, Shibata R, Mori T, Fukuma M, Yamazaki K et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 2006; 12: 2419–2426.

    CAS  PubMed  Google Scholar 

  131. Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D . The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis 2000; 18: 519–525.

    CAS  PubMed  Google Scholar 

  132. Jiang WG, Watkins G, Lane J, Cunnick GH, Douglas-Jones A, Mokbel K et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin Cancer Res 2003; 9: 6432–6440.

    CAS  PubMed  Google Scholar 

  133. Hu LD, Zou HF, Zhan SX, Cao KM . Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis. Oncol Rep 2007; 17: 1383–1389.

    PubMed  Google Scholar 

  134. Holderfield M, Nagel TE, Stuart DD . Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br J Cancer 2014; 111: 640–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 2012; 30: 316–321.

    CAS  PubMed  Google Scholar 

  136. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 2012; 366: 207–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Manchado E, Weissmueller S, Morris JP, Chen CC, Wullenkord R, Lujambio A et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 2016; 534: 647–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012; 10: 520–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Watson IR, Li L, Cabeceiras PK, Mahdavi M, Gutschner T, Genovese G et al. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res 2014; 74: 4845–4852.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W et al. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc Natl Acad Sci USA 2013; 110: 3155–3160.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shang X, Marchioni F, Sipes N, Evelyn CR, Jerabek-Willemsen M, Duhr S et al. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol 2012; 19: 699–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Evelyn CR, Ferng T, Rojas RJ, Larsen MJ, Sondek J, Neubig RR . High-throughput screening for small-molecule inhibitors of LARG-stimulated RhoA nucleotide binding via a novel fluorescence polarization assay. J Biomol Screen 2009; 14: 161–172.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto M, Takuwa Y . Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol 2000; 278: C57–C65.

    CAS  PubMed  Google Scholar 

  145. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990–994.

    CAS  PubMed  Google Scholar 

  146. He H, Huynh N . p21-activated kinase family: promising new drug targets. Res Rep Biochem 2015; 5: 119–128.

    Google Scholar 

  147. Bosco EE, Kumar S, Marchioni F, Biesiada J, Kordos M, Szczur K et al. Rational design of small molecule inhibitors targeting the Rac GTPase-p67(phox) signaling axis in inflammation. Chem Biol 2012; 19: 228–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Smithers CC, Overduin M . Structural mechanisms and drug discovery prospects of Rho GTPases. Cells 2016. 5.

  149. Biro M, Munoz MA, Weninger W . Targeting Rho-GTPases in immune cell migration and inflammation. Br J Pharmacol 2014; 171: 5491–5506.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pranatharthi A, Ross C, Srivastava S . Cancer stem cells and radioresistance: Rho/ROCK pathway plea attention. Stem Cells Int 2016; 2016: 5785786.

    PubMed  PubMed Central  Google Scholar 

  151. Zhang B, Zhang Y, Dagher MC, Shacter E . Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 2005; 65: 6054–6062.

    CAS  PubMed  Google Scholar 

  152. Skalnikova H, Martinkova J, Hrabakova R, Halada P, Dziechciarkova M, Hajduch M et al. Cancer drug-resistance and a look at specific proteins: Rho GDP-dissociation inhibitor 2, Y-box binding protein 1, and HSP70/90 organizing protein in proteomics clinical application. J Proteome Res 2011; 10: 404–415.

    CAS  PubMed  Google Scholar 

  153. Vogel CJ, Smit MA, Maddalo G, Possik PA, Sparidans RW, van der Burg SH et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res 2015; 28: 307–317.

    CAS  PubMed  Google Scholar 

  154. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun 2016; 7: 11363.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. McHenry PR, Vargo-Gogola T . Pleiotropic functions of Rho GTPase signaling: a Trojan horse or Achilles’ heel for breast cancer treatment? Curr Drug Targets 2010; 11: 1043–1058.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Walker K, Olson MF . Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr Opin Genet Dev 2005; 15: 62–68.

    CAS  PubMed  Google Scholar 

  157. Fukumoto Y, Mohri M, Inokuchi K, Ito A, Hirakawa Y, Masumoto A et al. Anti-ischemic effects of fasudil, a specific Rho-kinase inhibitor, in patients with stable effort angina. J Cardiovasc Pharmacol 2007; 49: 117–121.

    CAS  PubMed  Google Scholar 

  158. Shimokawa H, Hiramori K, Iinuma H, Hosoda S, Kishida H, Osada H et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol 2002; 40: 751–761.

    CAS  PubMed  Google Scholar 

  159. Vicari RM, Chaitman B, Keefe D, Smith WB, Chrysant SG, Tonkon MJ et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol 2005; 46: 1803–1811.

    CAS  PubMed  Google Scholar 

  160. Becker MS, Muller PM, Bajorat J, Schroeder A, Giaisi M, Amin E et al. The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration. Oncotarget 2016; 7: 51908–51921.

    PubMed  PubMed Central  Google Scholar 

  161. Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 1998; 273: 9656–9666.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the University of Cincinnati Medical Scientist Training Program and the Molecular and Developmental Biology Graduate Program at Cincinnati Children’s Hospital Medical Center. The work in the Yi Zheng lab is partly supported by NIH grants R01 CA193350, R01 DK104814 and R01 HL134617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zandvakili, I., Lin, Y., Morris, J. et al. Rho GTPases: Anti- or pro-neoplastic targets?. Oncogene 36, 3213–3222 (2017). https://doi.org/10.1038/onc.2016.473

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.473

This article is cited by

Search

Quick links