Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops

Abstract

Chronic inflammation is believed to have a crucial role in colon cancer development. MicroRNA (miRNA) deregulation is common in human colorectal cancers, but little is known regarding whether miRNA drives tumor progression by regulating inflammation. Here, we showed that miR-19a can promote colitis and colitis-associated colon cancer (CAC) development using a CAC mouse model and an acute colitis mouse model. Tumor necrosis factor-α (TNF-α) stimulation can increase miR-19a expression, and upregulated miR-19a can in turn activate nuclear factor (NF)-κB signaling and TNF-α production by targeting TNF alpha-induced protein 3 (TNFAIP3). miR-19a inhibition can also alleviate CAC in vivo. Moreover, the regulatory effects of miR-19a on TNFAIP3 and NF-κB signaling were confirmed using tumor samples from patients with colon cancer. These new findings demonstrate that miR-19a has a direct role in upregulating NF-κB signaling and that miR-19a has roles in inflammation and CAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  Google Scholar 

  2. Guina T, Biasi F, Calfapietra S, Nano M, Poli G . Inflammatory and redox reactions in colorectal carcinogenesis. Ann NY Acad Sci 2015; 1340: 95–103.

    Article  CAS  Google Scholar 

  3. Burisch J, Munkholm P . The epidemiology of inflammatory bowel disease. Scand J Gastroenterol 2015; 50: 942–951.

    Article  Google Scholar 

  4. Vlantis K, Wullaert A, Sasaki Y, Schmidt-Supprian M, Rajewsky K, Roskams T et al. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J Clin Invest 2011; 121: 2781–2793.

    Article  CAS  Google Scholar 

  5. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  6. Shembade N, Ma A, Harhaj EW . Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010; 327: 1135–1139.

    Article  CAS  Google Scholar 

  7. Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ . Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 2011; 44: 559–571.

    Article  CAS  Google Scholar 

  8. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation. EMBO J 2012; 31: 3856–3870.

    Article  CAS  Google Scholar 

  9. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694–699.

    Article  CAS  Google Scholar 

  10. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459: 712–716.

    Article  CAS  Google Scholar 

  11. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T et al. A20 inhibits LUBAC-mediated NF-kappaB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 2012; 31: 3845–3855.

    Article  CAS  Google Scholar 

  12. Jung SM, Lee JH, Park J, Oh YS, Lee SK, Park JS et al. Smad6 inhibits non-canonical TGF-beta1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat Commun 2013; 4: 2562.

    Article  Google Scholar 

  13. Shao L, Oshima S, Duong B, Advincula R, Barrera J, Malynn BA et al. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis. PloS One 2013; 8: e62223.

    Article  CAS  Google Scholar 

  14. Ahmed FE . miRNA as markers for the diagnostic screening of colon cancer. Expert Rev Anticancer Ther 2014; 14: 463–485.

    Article  CAS  Google Scholar 

  15. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC . MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 2012; 109: 7865–7870.

    Article  CAS  Google Scholar 

  16. Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C et al. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun 2013; 4: 2730.

    Article  Google Scholar 

  17. Ishikawa TO, Herschman HR . Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 2010; 31: 729–736.

    Article  CAS  Google Scholar 

  18. Neufert C, Becker C, Neurath MF . An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2007; 2: 1998–2004.

    Article  CAS  Google Scholar 

  19. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  20. Mihailovich M, Bremang M, Spadotto V, Musiani D, Vitale E, Varano G et al. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth. Nat Commun 2015; 6: 8725.

    Article  CAS  Google Scholar 

  21. Zhu H, Han C, Wu T . MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis 2015; 36: 1213–1222.

    Article  CAS  Google Scholar 

  22. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65: 9628–9632.

    Article  CAS  Google Scholar 

  23. Jin L, Lim M, Zhao S, Sano Y, Simone BA, Savage JE et al. The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster. Breast Cancer Res Treat 2014; 146: 41–50.

    Article  CAS  Google Scholar 

  24. Ma H, Pan JS, Jin LX, Wu J, Ren YD, Chen P et al. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Lett 2016; 376: 293–302.

    Article  CAS  Google Scholar 

  25. Kanaan Z, Rai SN, Eichenberger MR, Barnes C, Dworkin AM, Weller C et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat 2012; 33: 551–560.

    Article  CAS  Google Scholar 

  26. Knudsen KN, Nielsen BS, Lindebjerg J, Hansen TF, Holst R, Sorensen FB . microRNA-17 is the most up-regulated member of the miR-17-92 cluster during early colon cancer evolution. PloS One 2015; 10: e0140503.

    Article  Google Scholar 

  27. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009; 58: 1375–1381.

    Article  CAS  Google Scholar 

  28. Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z et al. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer 2012; 107: 352–359.

    Article  CAS  Google Scholar 

  29. Huang L, Wang X, Wen C, Yang X, Song M, Chen J et al. Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-alpha induced epithelial-to-mesenchymal transition in colorectal cancer. Sci Rep 2015; 5: 13350.

    Article  CAS  Google Scholar 

  30. Jiang H, Wang P, Wang Q, Wang B, Mu J, Zhuang X et al. Quantitatively controlling expression of miR-17~92 determines colon tumor progression in a mouse tumor model. Am J Pathol 2014; 184: 1355–1368.

    Article  CAS  Google Scholar 

  31. Cellura D, Pickard K, Quaratino S, Parker H, Strefford JC, Thomas GJ et al. miR-19-mediated inhibition of transglutaminase-2 leads to enhanced invasion and metastasis in colorectal cancer. Mol Cancer Res 2015; 13: 1095–1105.

    Article  CAS  Google Scholar 

  32. Eaden JA, Abrams KR, Mayberry JF . The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48: 526–535.

    Article  CAS  Google Scholar 

  33. Ito Y, Kikuchi E, Tanaka N, Kosaka T, Suzuki E, Mizuno R et al. Down-regulation of NF kappa B activation is an effective therapeutic modality in acquired platinum-resistant bladder cancer. BMC Cancer 2015; 15: 324.

    Article  Google Scholar 

  34. Lu T, Stark GR . NF-kappaB: regulation by methylation. Cancer Res 2015; 75: 3692–3695.

    Article  CAS  Google Scholar 

  35. Nakshatri H, Appaiah HN, Anjanappa M, Gilley D, Tanaka H, Badve S et al. NF-kappaB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis 2015; 6: e1608.

    Article  CAS  Google Scholar 

  36. Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z et al. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-kappaB/IkappaBalpha negative feedback loop. J Clin Invest 2012; 122: 33–47.

    Article  CAS  Google Scholar 

  37. Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T et al. MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. BioMed Res Int 2013; 2013: 867537.

    PubMed  PubMed Central  Google Scholar 

  38. Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C et al. TGF-beta induces miR-182 to sustain NF-kappaB activation in glioma subsets. J Clin Invest 2012; 122: 3563–3578.

    Article  CAS  Google Scholar 

  39. Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH et al. Downregulation of microRNA miR-520 h by E1A contributes to anticancer activity. Cancer Res 2010; 70: 5096–5108.

    Article  CAS  Google Scholar 

  40. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 2012; 21: 121–135.

    Article  CAS  Google Scholar 

  41. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC . Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 2008; 27: 5643–5647.

    Article  CAS  Google Scholar 

  42. Li Y, Vandenboom TG 2nd, Wang Z, Kong D, Ali S, Philip PA et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010; 70: 1486–1495.

    Article  CAS  Google Scholar 

  43. Simpson LJ, Patel S, Bhakta NR, Choy DF, Brightbill HD, Ren X et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol 2014; 15: 1162–1170.

    Article  CAS  Google Scholar 

  44. Chen B, She S, Li D, Liu Z, Yang X, Zeng Z et al. Role of miR-19a targeting TNF-alpha in mediating ulcerative colitis. Scand J Gastroenterol 2013; 48: 815–824.

    Article  CAS  Google Scholar 

  45. Liu M, Wang Z, Yang S, Zhang W, He S, Hu C et al. TNF-alpha is a novel target of miR-19a. Int J Oncol 2011; 38: 1013–1022.

    CAS  PubMed  Google Scholar 

  46. Fluckiger A, Dumont A, Derangere V, Rebe C, de Rosny C, Causse S et al. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFalpha. Oncogene 2016; 35: 4611–4622.

    Article  CAS  Google Scholar 

  47. Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M et al. A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res 2012; 40: 8048–8058.

    Article  CAS  Google Scholar 

  48. Landers CJ, Cohavy O, Misra R, Yang H, Lin YC, Braun J et al. Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123: 689–699.

    Article  CAS  Google Scholar 

  49. Wirtz S, Neufert C, Weigmann B, Neurath MF . Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007; 2: 541–546.

    Article  CAS  Google Scholar 

  50. Bi L, Gojestani S, Wu W, Hsu YM, Zhu J, Ariizumi K et al. CARD9 mediates dectin-2-induced IkappaBalpha kinase ubiquitination leading to activation of NF-kappaB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 2010; 285: 25969–25977.

    Article  CAS  Google Scholar 

  51. Wang T, Lv M, Shen S, Zhou S, Wang P, Chen Y et al. Cell-free microRNA expression profiles in malignant effusion associated with patient survival in non-small cell lung cancer. PloS One 2012; 7: e43268.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Natural Science Foundation of China (81572354, 81571800, and 81371680) and Natural Science Foundation of Jiangsu Province (BK20161400).

Author contributions

Conceived and designed the experiments: TW, SS and YH. Performed the experiments: TW, XX, QX, JR, SS, CF and YH. Analyzed the data: TW, XX and SS. Wrote the paper: TW and YH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Shen, C Fan or Y Hou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xu, X., Xu, Q. et al. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops. Oncogene 36, 3240–3251 (2017). https://doi.org/10.1038/onc.2016.468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.468

This article is cited by

Search

Quick links