Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Δ133p53 isoform and its mouse analogue Δ122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2

Abstract

A number of naturally occurring isoforms of the tumour suppressor protein p53 have been discovered, which appear to have differing roles in tumour prevention or promotion. We are investigating the tumour-promoting activities of the Δ133p53 isoform using our mouse model of Δ133p53 (Δ122p53). Here, we report that tumours from Δ122p53 homozygous mice show evidence of invasion and metastasis and that Δ122p53 promotes migration though a 3-dimensional collagen matrix. We also show that Δ122p53 and Δ133p53 promote cell migration in scratch wound and Transwell assays, similar to the ‘gain-of-function’ phenotypes seen with mutant p53. Using the well-defined B16 mouse melanoma metastatic model, we show that Δ122p53 leads to faster generation of lung metastases. The increased migratory phenotypes are dependent on secreted factors, including the cytokine interleukin-6 and the chemokine CCL2. We propose that Δ122p53 (and Δ133p53) acts in a similar manner to ‘gain-of-function’ mutant p53 proteins to promote migration, invasion and metastasis, which may contribute to poor survival in patients with Δ133p53-expressing tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

FBS:

foetal bovine serum

FL:

full-length

IL-6:

interleukin-6

MEF:

mouse embryonic fibroblast

PDAC:

pancreatic ductal adenocarcinoma

TP53:

human p53 gene

WT:

wild type

References

  1. Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J . Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 2000; 19: 5826–5830.

    Article  CAS  PubMed  Google Scholar 

  2. Gadea G, Lapasset L, Gauthier-Rouviere C, Roux P . Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 2002; 21: 2373–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo F, Gao Y, Wang L, Zheng Y . p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem 2003; 278: 14414–14419.

    Article  CAS  PubMed  Google Scholar 

  4. Guo F, Zheng Y . Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 2004; 23: 5577–5585.

    Article  CAS  PubMed  Google Scholar 

  5. Gadea G, de Toledo M, Anguille C, Roux P . Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 2007; 178: 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14: 34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rastinejad F, Polverini PJ, Bouck NP . Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345–355.

    Article  CAS  PubMed  Google Scholar 

  8. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–6628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 2011; 18: 1815–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh AM et al. p53Psi is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci USA 2014; 111: E3287–E3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19: 2122–2137.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K . Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 2007; 43: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avery-Kiejda KA, Zhang XD, Adams LJ, Scott RJ, Vojtesek B, Lane DP et al. Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res 2008; 14: 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  14. Song W, Huo SW, Lu JJ, Liu Z, Fang XL, Jin XB et al. Expression of p53 isoforms in renal cell carcinoma. Chinese Med J 2009; 122: 921–926.

    CAS  Google Scholar 

  15. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 2009; 11: 1135–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P . Ratio disruption of the 133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol 2013; 42: 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  17. Bernard H, Garmy-Susini B, Ainaoui N, Van Den Berghe L, Peurichard A, Javerzat S et al. The p53 isoform, Delta133p53alpha, stimulates angiogenesis and tumour progression. Oncogene 2013; 32: 2150–2160.

    Article  CAS  PubMed  Google Scholar 

  18. Hafsi H, Santos-Silva D, Courtois-Cox S, Hainaut P . Effects of Delta40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53. BMC Cancer 2013; 13: 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slatter TL, Hung N, Bowie S, Campbell H, Rubio C, Speidel D et al. Delta122p53, a mouse model of Delta133p53alpha, enhances the tumor-suppressor activities of an attenuated p53 mutant. Cell Death Dis 2015; 6: e1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slatter TL, Hung N, Campbell H, Rubio C, Mehta R, Renshaw P et al. Hyperproliferation, cancer, and inflammation in mice expressing a Delta133p53-like isoform. Blood 2011; 117: 5166–5177.

    Article  CAS  PubMed  Google Scholar 

  21. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.

    Article  PubMed  Google Scholar 

  22. Muller PA, Vousden KH, Norman JC . p53 and its mutants in tumor cell migration and invasion. J Cell Biol 2011; 192: 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson RK, Wodinsky I, Swiniarski J, Meaney KF, Clement JJ . Interaction of gamma-irradiation with two new antineoplastic agents, aziridinylbenzoquinone (AZQ) and 4'-(acridinylamino)methanesulfon-m-anisidide (AMSA), in murine tumors in vivo. Int J Radiat Oncol Biol Phys 1979; 5: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  24. Timpson P, McGhee EJ, Erami Z, Nobis M, Quinn JA, Edward M et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp 2011, (56) e3089.

  25. Fidler IJ . Selection of successive tumour lines for metastasis. Nat New Biol 1973; 242: 148–149.

    Article  CAS  PubMed  Google Scholar 

  26. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  PubMed  Google Scholar 

  27. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA . Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 1994; 91: 3652–3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davatelis G, Tekamp-Olson P, Wolpe SD, Hermsen K, Luedke C, Gallegos C et al. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med 1988; 167: 1939–1944.

    Article  CAS  PubMed  Google Scholar 

  29. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG . B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001; 2: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  30. Blay JY, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y et al. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res 1992; 52: 3317–3322.

    CAS  PubMed  Google Scholar 

  31. Gudkov AV, Gurova KV, Komarova EA . Inflammation and p53: a tale of two stresses. Genes Cancer 2011; 2: 503–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anensen N, Oyan AM, Bourdon JC, Kalland KH, Bruserud O, Gjertsen BT . A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res 2006; 12: 3985–3992.

    Article  CAS  PubMed  Google Scholar 

  33. Hofstetter G, Berger A, Fiegl H, Slade N, Zoric A, Holzer B et al. Alternative splicing of p53 and p73: the novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene 2010; 29: 1997–2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Health Research Council of New Zealand, Marsden Fund, Maurice Wilkins Centre for Molecular Biodiscovery, Cancer Council NSW and National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A W Braithwaite.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, I., Campbell, H., Rubio, C. et al. The Δ133p53 isoform and its mouse analogue Δ122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene 35, 4981–4989 (2016). https://doi.org/10.1038/onc.2016.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.45

This article is cited by

Search

Quick links