Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity

Subjects

A Correction to this article was published on 02 January 2020

Abstract

Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that coordinates glycolysis and biosynthesis to promote cancer growth via its metabolic activity. Here, we report the discovery of a non-metabolic function of PGAM1 in promoting cancer metastasis. A proteomic study identified α-smooth muscle actin (ACTA2) as a PGAM1-associated protein. PGAM1 modulated actin filaments assembly, cell motility and cancer cell migration via directly interacting with ACTA2, which was independent of its metabolic activity. The enzymatically inactive H186R mutant retained its association with ACTA2, whereas 201–210 amino acids deleted PGAM1 mutant lost the interaction with ACTA2 regardless of intact metabolic activity. Importantly, PGAM1 knockdown decreased metastatic potential of breast cancer cells in vivo and PGAM1 and ACTA2 were jointly associated with the prognosis of breast cancer patients. Together, this study provided the first evidence revealing a non-metabolic function of PGAM1 in promoting cell migration, and gained new insights into the role of PGAM1 in cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hsu PP, Sabatini DM . Cancer cell metabolism: warburg and beyond. Cell 2008; 134: 703–707.

    Article  CAS  Google Scholar 

  2. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  4. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  Google Scholar 

  5. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011; 480: 118–122.

    Article  CAS  Google Scholar 

  6. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    Article  CAS  Google Scholar 

  7. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150: 685–696.

    Article  CAS  Google Scholar 

  8. Gao X, Wang H, Yang JJ, Liu X, Liu ZR . Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45: 598–609.

    Article  CAS  Google Scholar 

  9. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 2004;16: 819–830.

    Article  CAS  Google Scholar 

  10. Mathupala SP, Ko YH, Pedersen PL . Hexokinase-2 bound to mitochondria: cancer's stygian link to the 'Warburg Effect' and a pivotal target for effective therapy. Semin Cancer Biol 2009; 19: 17–24.

    Article  CAS  Google Scholar 

  11. Fothergill-Gilmore LA, Watson HC . The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol 1989; 62: 227–313.

    CAS  PubMed  Google Scholar 

  12. Durany N, Joseph J, Jimenez OM, Climent F, Fernandez PL, Rivera F et al. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br J Cancer 2000; 82: 20–27.

    Article  CAS  Google Scholar 

  13. Chen G, Gharib TG, Wang H, Huang CC, Kuick R, Thomas DG et al. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci USA 2003; 100: 13537–13542.

    Article  CAS  Google Scholar 

  14. Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X et al. Proteome analysis of human lung squamous carcinoma. Proteomics 2006; 6: 547–558.

    Article  CAS  Google Scholar 

  15. Narayanan NK, Narayanan BA, Nixon DW . Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect Prev 2004; 28: 443–452.

    Article  CAS  Google Scholar 

  16. Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M . Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis 2006; 27: 1417–1423.

    Article  CAS  Google Scholar 

  17. Engel M, Mazurek S, Eigenbrodt E, Welter C . Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J Biol Chem 2004; 279: 35803–35812.

    Article  CAS  Google Scholar 

  18. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF . Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 2005; 23: 1303–1307.

    Article  CAS  Google Scholar 

  19. Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 2012; 22: 585–600.

    Article  CAS  Google Scholar 

  20. Ren F, Wu H, Lei Y, Zhang H, Liu R, Zhao Y et al. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer 2010; 9: 81.

    Article  Google Scholar 

  21. Hitosugi T, Zhou L, Fan J, Elf S, Zhang L, Xie J et al. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat Commun 2013; 4: 1790.

    Article  Google Scholar 

  22. Hinz B, Gabbiani G, Chaponnier C . The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 2002; 157: 657–663.

    Article  CAS  Google Scholar 

  23. Rockey DC, Weymouth N, Shi Z . Smooth muscle alpha actin (Acta2) and myofibroblast function during hepatic wound healing. PloS One 2013; 8: e77166.

    Article  CAS  Google Scholar 

  24. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39: 1488–1493.

    Article  CAS  Google Scholar 

  25. Morisaki H, Akutsu K, Ogino H, Kondo N, Yamanaka I, Tsutsumi Y et al. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum Mutat 2009; 30: 1406–1411.

    Article  CAS  Google Scholar 

  26. Lee HW, Seol HJ, Choi YL, Ju HJ, Joo KM, Ko YH et al. Genomic copy number alterations associated with the early brain metastasis of non-small cell lung cancer. Int J Oncol 2012; 41: 2013–2020.

    Article  CAS  Google Scholar 

  27. Lee HW, Park YM, Lee SJ, Cho HJ, Kim DH, Lee JI et al. Alpha-smooth muscle actin (ACTA2) is required for metastatic potential of human lung adenocarcinoma. Clin Cancer Res 2013; 19: 5879–5889.

    Article  CAS  Google Scholar 

  28. Hu H, Juvekar A, Lyssiotis CA, Lien EC, Albeck JG, Oh D et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 2016; 164: 433–446.

    Article  CAS  Google Scholar 

  29. Olson MF, Sahai E . The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2009; 26: 273–287.

    Article  Google Scholar 

  30. Croise P, Estay-Ahumada C, Gasman S, Ory S . Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5: e29469.

    Article  Google Scholar 

  31. Hallows WC, Yu W, Denu JM . Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 2012; 287: 3850–3858.

    Article  CAS  Google Scholar 

  32. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li QY et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  Google Scholar 

  33. Durany N, Joseph J, Cruz-Sanchez FF, Carreras J . Phosphoglycerate mutase, 2, 3-bisphosphoglycerate phosphatase and creatine kinase activity and isoenzymes in human brain tumours. Br J Cancer 1997; 76: 1139–1149.

    Article  CAS  Google Scholar 

  34. Yeh CS, Wang JY, Chung FY, Lee SC, Huang MY, Kuo CW et al. Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol Rep 2008; 19: 81–91.

    CAS  PubMed  Google Scholar 

  35. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65: 177–185.

    CAS  PubMed  Google Scholar 

  36. Fritz G, Kaina B . Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 2006; 6: 1–14.

    CAS  PubMed  Google Scholar 

  37. Lambrechts A, Van Troys M, Ampe C . The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2004; 36: 1890–1909.

    Article  CAS  Google Scholar 

  38. Thomasson MS, Macnaughtan MA . Microscopy basics and the study of actin-actin-binding protein interactions. Anal Biochem 2013; 443: 156–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China International Science and Technology Cooperation Program (No. 2015DFM30040 to MH), the National Science and Technology Major Project (No. 2015ZX09101009 to MH), grants from the National Natural Science Foundation of China (No. 81573464 to MH, No. 81321092 to JD) and NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406402 to JD)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Huang or M Geng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Jin, N., Sun, W. et al. Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene 36, 2900–2909 (2017). https://doi.org/10.1038/onc.2016.446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.446

This article is cited by

Search

Quick links