Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of KPNA4 attenuates prostate cancer metastasis

Abstract

Prostate cancer (PCa) is a common cancer in men. Although current treatments effectively palliate symptoms and prolong life, the metastatic PCa remains incurable. It is important to find biomarkers and targets to improve metastatic PCa diagnosis and treatment. Here we report a novel correlation between karyopherin α4 (KPNA4) and PCa pathological stages. KPNA4 mediates the cytoplasm-to-nucleus translocation of transcription factors, including nuclear factor kappa B, although its role in PCa was largely unknown. We find that knockdown of KPNA4 reduces cell migration in multiple PCa cell lines, suggesting a role of KPNA4 in PCa progression. Indeed, stable knockdown of KPNA4 significantly reduces PCa invasion and distant metastasis in mouse models. Functionally, KPNA4 alters tumor microenvironment in terms of macrophage polarization and osteoclastogenesis by modulating tumor necrosis factor (TNF)-α and -β. Further, KPNA4 is proved as a direct target of miR-708, a tumor-suppressive microRNA. We disclose the role of miR-708-KPNA4-TNF axes in PCa metastasis and KPNA4’s potential as a novel biomarker for PCa metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 2011; 20: 701–714.

    Article  CAS  Google Scholar 

  2. Zitvogel L, Kepp O, Galluzzi L, Kroemer G . Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 2012; 13: 343–351.

    Article  CAS  Google Scholar 

  3. Brenner D, Blaser H, Mak TW . Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15: 362–374.

    Article  CAS  Google Scholar 

  4. Hu X, Li B, Li X, Zhao X, Wan L, Lin G et al. Transmembrane TNF-alpha promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J Immunol 2014; 192: 1320–1331.

    Article  CAS  Google Scholar 

  5. Wu Y, Zhou BP . TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639–644.

    Article  CAS  Google Scholar 

  6. Bertrand F, Rochotte J, Colacios C, Montfort A, Tilkin-Mariame AF, Touriol C et al. Blocking tumor necrosis factor alpha enhances CD8 T cell-dependent immunity in experimental melanoma. Cancer Res 2015; 75: 2619–2628.

    Article  CAS  Google Scholar 

  7. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118: 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 2015; 522: 349–353.

    Article  CAS  Google Scholar 

  9. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell 2014; 26: 534–548.

    Article  CAS  Google Scholar 

  10. Ostuni R, Kratochvill F, Murray PJ, Natoli G . Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 2015; 36: 229–239.

    Article  CAS  Google Scholar 

  11. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006; 116: 2132–2141.

    Article  CAS  Google Scholar 

  12. Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA 2014; 111: 3514–3519.

    Article  CAS  Google Scholar 

  13. Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H et al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res 2013; 73: 5633–5646.

    Article  CAS  Google Scholar 

  14. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  Google Scholar 

  15. Chen PC, Cheng HC, Wang J, Wang SW, Tai HC, Lin CW et al. Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget 2014; 5: 1595–1608.

    PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H et al. Hydrazinocurcumin Encapsuled nanoparticles ‘re-educate’ tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PloS One 2013; 8: e65896.

    Article  CAS  Google Scholar 

  17. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 2014; 33: 3014–3023.

    Article  CAS  Google Scholar 

  18. Fagerlund R, Kinnunen L, Kohler M, Julkunen I, Melen K . NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 2005; 280: 15942–15951.

    Article  CAS  Google Scholar 

  19. Agrawal T, Gupta GK, Agrawal DK . Calcitriol decreases expression of importin alpha3 and attenuates RelA translocation in human bronchial smooth muscle cells. J Clin Immunol 2012; 32: 1093–1103.

    Article  CAS  Google Scholar 

  20. Mak P, Li J, Samanta S, Mercurio AM . ERbeta regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget 2015; 6: 40247–40254.

    PubMed  PubMed Central  Google Scholar 

  21. Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T et al. NF-kappaB gene signature predicts prostate cancer progression. Cancer Res 2014; 74: 2763–2772.

    Article  CAS  Google Scholar 

  22. Sachan N, Mishra AK, Mutsuddi M, Mukherjee A . The Drosophila importin-alpha3 is required for nuclear import of notch in vivo and it displays synergistic effects with notch receptor on cell proliferation. PloS One 2013; 8: e68247.

    Article  CAS  Google Scholar 

  23. Abravanel DL, Belka GK, Pan TC, Pant DK, Collins MA, Sterner CJ et al. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J Clin Invest 2015; 125: 2484–2496.

    Article  Google Scholar 

  24. Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B et al. Targeting notch signaling with a notch2/notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical Cancer Res 2015; 21: 2084–2095.

    Article  CAS  Google Scholar 

  25. Ahluwalia A, Jones MK, Tarnawski AS . Key role of endothelial importin-alpha in VEGF expression and gastric angiogenesis: novel insight into aging gastropathy. Am J Physiol Gastrointest Liver Physiol 2014; 306: G338–G345.

    Article  CAS  Google Scholar 

  26. Wang H, Tao T, Yan W, Feng Y, Wang Y, Cai J et al. Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep 2015; 5: 13072.

    Article  CAS  Google Scholar 

  27. Liang J, Li X, Li Y, Wei J, Daniels G, Zhong X et al. LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a. Am J Cancer Res 2015; 5: 1124–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin S, Gregory RI . MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15: 321–333.

    Article  CAS  Google Scholar 

  29. Yang J, Wei J, Wu Y, Wang Z, Guo Y, Lee P et al. Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis 2015; 4: e158.

    Article  CAS  Google Scholar 

  30. Kasinski AL, Slack FJ . Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11: 849–864.

    Article  CAS  Google Scholar 

  31. Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I et al. miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 2012; 72: 3618–3630.

    Article  CAS  Google Scholar 

  32. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 2013; 23: 63–76.

    Article  CAS  Google Scholar 

  33. Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP et al. Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 2015; 6: 5917.

    Article  CAS  Google Scholar 

  34. Jin R, Yamashita H, Yu X, Wang J, Franco OE, Wang Y et al. Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression. Oncogene 2015; 34: 3700–3710.

    Article  CAS  Google Scholar 

  35. Lamb LE, Zarif JC, Miranti CK . The androgen receptor induces integrin alpha6beta1 to promote prostate tumor cell survival via NF-kappaB and Bcl-xL Independently of PI3K signaling. Cancer Res 2011; 71: 2739–2749.

    Article  CAS  Google Scholar 

  36. Nadiminty N, Lou W, Sun M, Chen J, Yue J, Kung HJ et al. Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 2010; 70: 3309–3319.

    Article  CAS  Google Scholar 

  37. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M . B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010; 464: 302–305.

    Article  CAS  Google Scholar 

  38. Gerondakis S, Fulford TS, Messina NL, Grumont RJ . NF-kappaB control of T cell development. Nat Immunol 2014; 15: 15–25.

    Article  CAS  Google Scholar 

  39. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL . TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106: 1481–1488.

    Article  CAS  Google Scholar 

  40. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191: 275–286.

    Article  CAS  Google Scholar 

  41. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res 2009; 69: 1685–1692.

    Article  CAS  Google Scholar 

  42. Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 2005; 146: 1727–1736.

    Article  CAS  Google Scholar 

  43. Li X, Yao W, Yuan Y, Chen P, Li B, Li J et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 2015, epub ahead 9 October 2015 doi:10.1136/gutjnl-2015-310514.

    Article  Google Scholar 

  44. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.

    Article  Google Scholar 

  45. Feng FY, Kothari V . Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer. Proc Natl Acad Sci USA 2016; 113: 473–475.

    Article  CAS  Google Scholar 

  46. Mortezavi A, Hermanns T, Seifert HH, Baumgartner MK, Provenzano M, Sulser T et al. KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 2011; 17: 1111–1121.

    Article  CAS  Google Scholar 

  47. Ikenberg K, Valtcheva N, Brandt S, Zhong Q, Wong CE, Noske A et al. KPNA2 is overexpressed in human and mouse endometrial cancers and promotes cellular proliferation. J Pathol 2014; 234: 239–252.

    CAS  PubMed  Google Scholar 

  48. Rachidi SM, Qin T, Sun S, Zheng WJ, Li Z . Molecular profiling of multiple human cancers defines an inflammatory cancer-associated molecular pattern and uncovers KPNA2 as a uniform poor prognostic cancer marker. PloS One 2013; 8: e57911.

    Article  CAS  Google Scholar 

  49. Sakai M, Sohda M, Miyazaki T, Suzuki S, Sano A, Tanaka N et al. Significance of karyopherin-{alpha} 2 (KPNA2) expression in esophageal squamous cell carcinoma. Anticancer Res 2010; 30: 851–856.

    PubMed  Google Scholar 

  50. Xu A, Sun S . Genomic profiling screens small molecules of metastatic prostate carcinoma. Oncology Lett 2015; 10: 1402–1408.

    Article  CAS  Google Scholar 

  51. Theiss AL, Jenkins AK, Okoro NI, Klapproth JM, Merlin D, Sitaraman SV . Prohibitin inhibits tumor necrosis factor alpha-induced nuclear factor-kappa B nuclear translocation via the novel mechanism of decreasing importin alpha3 expression. Mol Biol Cell 2009; 20: 4412–4423.

    Article  CAS  Google Scholar 

  52. Zadran S, Remacle F, Levine RD . miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proc Natl Acad Sci USA 2013; 110: 19160–19165.

    Article  CAS  Google Scholar 

  53. Fournier PG, Juarez P, Jiang G, Clines GA, Niewolna M, Kim HS et al. The TGF-beta Signaling Regulator PMEPA1 Suppresses Prostate Cancer Metastases to Bone. Cancer Cell 2015; 27: 809–821.

    Article  CAS  Google Scholar 

  54. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67: 585–592.

    Article  CAS  Google Scholar 

  55. Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res 2007; 67: 9825–9834.

    Article  CAS  Google Scholar 

  56. Zins K, Abraham D, Sioud M, Aharinejad S . Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 2007; 67: 1038–1045.

    Article  CAS  Google Scholar 

  57. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C . Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 2004; 25: 1543–1549.

    Article  CAS  Google Scholar 

  58. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 2006; 176: 5023–5032.

    Article  CAS  Google Scholar 

  59. Balkwill F, Charles KA, Mantovani A . Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211–217.

    Article  CAS  Google Scholar 

  60. Gordon S . Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  Google Scholar 

  61. Balkwill F . Tumor necrosis factor or tumor promoting factor? Cytokine Growth Fact Rev 2002; 13: 135–141.

    Article  CAS  Google Scholar 

  62. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 2014; 512: 431–435.

    Article  CAS  Google Scholar 

  63. Gartrell BA, Saad F . Managing bone metastases and reducing skeletal related events in prostate cancer. Nat Rev Clin Oncol 2014; 11: 335–345.

    Article  CAS  Google Scholar 

  64. Guise TA . Molecular mechanisms of osteolytic bone metastases. Cancer 2000; 88: 2892–2898.

    Article  CAS  Google Scholar 

  65. Jin JK, Tien PC, Cheng CJ, Song JH, Huang C, Lin SH et al. Talin1 phosphorylation activates beta1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 2015; 34: 1811–1821.

    Article  CAS  Google Scholar 

  66. Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M et al. Targeting constitutively activated beta1 integrins inhibits prostate cancer metastasis. Mol Cancer Res 2013; 11: 405–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01CA180277 and R03CA172894 to Xin Li, and in part by the NYU CTSA grant numbers 1UL1TR001445, 1KL2TR001446 and 1TL1TR001447 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health. We thank Dr Deepak Saxena (New York University, New York, NY, USA) for the proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lu, C., Wei, J. et al. Inhibition of KPNA4 attenuates prostate cancer metastasis. Oncogene 36, 2868–2878 (2017). https://doi.org/10.1038/onc.2016.440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.440

This article is cited by

Search

Quick links