Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer

Abstract

Heparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell- and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bissell MJ, Hines WC . Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011; 17: 320–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Breton C, Fournel-Gigleux S, Palcic MM . Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 2012; 22: 540–549.

    Article  CAS  PubMed  Google Scholar 

  3. Kusche-Gullberg M, Kjellen L . Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 2003; 3: 605–611.

    Article  Google Scholar 

  4. Gulberti S, Lattard V, Fondeur M, Jacquinet JC, Mulliert G, Netter P et al. Phosphorylation and sulfation of oligosaccharide substrates critically influence the activity of human beta 1,4-galactosyltransferase 7 (GalT-1) and beta 1,3-glucuronosyltransferase 1 (GlcAT-1) involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 2005; 280: 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  5. Girardin EP, Hajmohammadi S, Birmele B, Helisch A, Shworak NW, de Agostini AI . Synthesis of anticoagulantly active heparan sulfate proteoglycans by glomerular epithelial cells involves multiple 3-O-sulfotransferase isoforms and a limiting precursor pool. J Biol Chem 2005; 280: 38059–38070.

    Article  CAS  PubMed  Google Scholar 

  6. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13–22.

    Article  CAS  PubMed  Google Scholar 

  7. Nurcombe V, Smart CE, Chipperfield H, Cool SM, Boilly B, Hondermarck H . The proliferative and migratory activities of breast cancer cells can be differentially regulated by heparan sulfates. J Biol Chem 2000; 275: 30009–30018.

    Article  CAS  PubMed  Google Scholar 

  8. Lofgren L, Sahlin L, Jiang S, Von Schoultz B, Fernstad R, Skoog L et al. Expression of syndecan-1 in paired samples of normal and malignant breast tissue from postmenopausal women. Anticancer Res 2007; 27: 3045–3050.

    CAS  PubMed  Google Scholar 

  9. Staub J, Chien J, Pan Y, Qian X, Narita K, Aletti G et al. Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene 2007; 26: 4969–4978.

    Article  CAS  PubMed  Google Scholar 

  10. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U . Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2002; 2: 521–528.

    Article  CAS  PubMed  Google Scholar 

  11. Miyamoto K, Asada K, Fukutomi T, Okochi E, Yagi Y, Hasegawa T et al. Methylation-associated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST2) in human breast, colon, lung and pancreatic cancers. Oncogene 2003; 22: 274–280.

    Article  CAS  PubMed  Google Scholar 

  12. Raman K, Kuberan B . Chemical tumor biology of heparan sulfate proteoglycans. Curr Chem Biol 2010; 4: 20–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hwang JA, Kim Y, Hong SH, Lee J, Cho YG, Han JY et al. Epigenetic inactivation of heparan sulfate (glucosamine) 3-O-sulfotransferase 2 in lung cancer and its role in tumorigenesis. PLoS One 2013; 8: e79634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song K, Li Q, Jiang ZZ, Guo CW, Li P . Heparan sulfate D-glucosaminyl 3-O sulfotransferase-3B1, a novel epithelial-mesenchymal transition inducer in pancreatic cancer. Cancer Biol Ther 2011; 12: 388–398.

    Article  CAS  PubMed  Google Scholar 

  15. Bui C, Ouzzine M, Talhaoui I, Sharp S, Prydz K, Coughtrie MW et al. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J 2010; 24: 436–450.

    Article  CAS  PubMed  Google Scholar 

  16. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer. Ann Oncol 2013; 24: 2206–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Croce L, Helin K . Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 10: 1147–1155.

    Article  Google Scholar 

  18. Fuks F, Hurd PJ, Wolf D, Nan X, Bird APKouzarides T . The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003; 278: 4035–4040.

    Article  CAS  PubMed  Google Scholar 

  19. Kadamb R, Mittal S, Bansal N, Batra H, Saluja D . Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013; 92: 237–246.

    Article  CAS  PubMed  Google Scholar 

  20. van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH . Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 1998; 273: 12960–12966.

    Article  CAS  PubMed  Google Scholar 

  21. Delehedde M, Lyon M, Sergeant N, Rahmoune H, Fernig DG . Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia 2001; 6: 253–273.

    Article  CAS  PubMed  Google Scholar 

  22. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271: 15292–15297.

    Article  CAS  PubMed  Google Scholar 

  23. Kitsberg DI, Leder P . Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 1996; 13: 2507–2515.

    CAS  PubMed  Google Scholar 

  24. Jacquemier J, Sun ZZ, Penault-Llorca F, Geneix J, Devilard E, Adelaide J et al. FGF7 protein expression in human breast carcinomas. J Pathol 1998; 86: 269–274.

    Article  Google Scholar 

  25. Zang XP, Siwak DR, Nguyen TX, Tari AM, Pento JT . KGF-induced motility of breast cancer cells is dependent on Grb2 and Erk1,2. Clin Exp Metastasis 2004; 21: 437–443.

    Article  CAS  PubMed  Google Scholar 

  26. Cha JY, Lambert QT, Reuther GW, Der CJ . Involvement of fibroblast growth factor receptor isoform switching in mammary oncogenesis. Mol Cancer Res 2008; 6: 435–445.

    Article  CAS  PubMed  Google Scholar 

  27. Turner N, Grose R . Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010; 10: 116–129.

    Article  CAS  PubMed  Google Scholar 

  28. Marcel V, Fernandes K, Terrier O, Lane DP, Bourdon JC . Modulation of p53beta and p53gamma expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ 2014; 21: 1377–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hajian-Tilaki K . Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4: 627–635.

    PubMed  PubMed Central  Google Scholar 

  30. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S et al. Cutoff finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One 2012; 7: e51862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thacker BE, Xu D, Lawrence R, Esko JD . Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 2013; 35: 60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kokura K, Sun L, Bedford MT, Fang J . Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J 2010; 29: 3673–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T et al. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 2013; 15: R4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R . Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 2013; 8: 237–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R . Detection of RASSF1A and RAR hypermethylation in serum DNA from breast cancer patients. Epigenetics 2006; 1: 88–93.

    Article  PubMed  Google Scholar 

  36. Dieci MV, Arnedos M, Andre F, Soria JC . Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 2013; 3: 264–279.

    Article  CAS  PubMed  Google Scholar 

  37. Cha JY, Maddileti S, Mitin N, Harden TK, Der CJ . Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J Biol Chem 2009; 284: 6227–6240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai A, Meetze K, Vo NY, Kollipara S, Mazsa EK, Winston WM et al. GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res 2010; 70: 7630–7639.

    Article  CAS  PubMed  Google Scholar 

  39. Ye S, Luo Y, Lu W, Jones RB, Linhardt RJ, Capila I et al. Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry 2001; 40: 14429–14439.

    Article  CAS  PubMed  Google Scholar 

  40. Xu R, Ori A, Rudd TR, Uniewicz KA, Ahmed YA, Guimond SE et al. Diversification of the structural determinants of fibroblast growth factor-heparin interactions: implications for binding specificity. J Biol Chem 2012; 287: 40061–40073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehta M, Kesinger JW, Zang XP, Lerner ML, Brackett DJ, Brueggemeier RW et al. Influence of novel KGFR tyrosine kinase inhibitors on KGF-mediated proliferation of breast cancer. Anticancer Res 2010; 30: 4883–4889.

    CAS  PubMed  Google Scholar 

  42. Luo Y, Ye S, Kan M, McKeehan WL . Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 2006; 281: 21052–21061.

    Article  CAS  PubMed  Google Scholar 

  43. Nieto L, Canales Á, Fernández IS, Santillana E, González-Corrochano R, Redondo-Horcajo M et al. Heparin modulates the mitogenic activity of fibroblast growth factor by inducing dimerization of its receptor. a 3D view by using NMR. Chembiochem 2013; 14: 1732–1744.

    Article  CAS  PubMed  Google Scholar 

  44. Fournel-Gigleux S, Sutherland L, Sabolovic N, Burchell B, Siest G . Stable expression of two human UDP-glucuronosyltransferases cDNAs in V79 cell cultures. Mol Pharmacol 1991; 39: 177–183.

    CAS  PubMed  Google Scholar 

  45. Bourdon JC, Khoury MP, Diot A, Baker L, Fernandes K, Aoubala M et al. p53 mutant breast cancer patients expressing p53gamma have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 2011; 13: R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bloom HJ, Richardson WW . Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957; 11: 359–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Detre S, Saclani Jotti G, Dowsett M . A"quickscore" method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 1995; 48: 876–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Purdie CA, Jordan LB, McCullough JB, Edwards SL, Cunningham J, Walsh M et al. HER2 assessment on core biopsy specimens using monoclonal antibody CB11 accurately determines HER2 status in breast carcinoma. Histopathology 2010; 56: 702–707.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Philippe Lassalle (INSERM U1019E11, Campus Institut Pasteur de Lille, Lille, France) is gratefully acknowledged for support with the xenograft experiments and for helpful discussion. Matthieu Chabel and Anne Robert are acknowledged for excellent technical assistance and Xiaomeng Pang is acknowledged for performing methylation analysis. This work was supported by Agence Nationale de la Recherche (ANR-GAG Network ANR-08-PCVI-0023 and ANR Meca-GT ANR-13-BSV8-0011-01), a Royal Society International Joint grant (to MWHC and SF-G), grants from Région Lorraine and Lorraine University to SF-G and to NR, and was carried out under auspices of the International Associated Laboratory (SFGEN) funded between CNRS-UL (SF-G) and University of Dundee (J-CB and MWHC). Tayside Tissue Bank is supported by Breast Cancer Campaign, Cancer Research UK (CRUK) and by NHS Tayside through the Chief Scientist Office and Health Sciences Scotland (formerly the Scottish Academic Health Science Collaboration, AHSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fournel-Gigleux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Gauche, C., Coughtrie, M. et al. The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer. Oncogene 35, 5043–5055 (2016). https://doi.org/10.1038/onc.2016.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.44

This article is cited by

Search

Quick links