Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

CIB1 contributes to oncogenic signalling by Ras via modulating the subcellular localisation of sphingosine kinase 1

Abstract

CIB1 (calcium and integrin binding protein 1) is a small intracellular protein with numerous interacting partners, and hence has been implicated in various cellular functions. Recent studies have revealed emerging roles of CIB1 in regulating cancer cell survival and angiogenesis, although the mechanisms involved have remained largely undefined. In investigating the oncogenic function of CIB1, we initially found that CIB1 is widely up-regulated across a diverse range of cancers, with this upregulation frequently correlating with oncogenic mutations of KRas. Consistent with this, we found that ectopic expression of oncogenic KRas and HRas in cells resulted in elevated CIB1 expression. We previously described the Ca2+-myristoyl switch function of CIB1, and its ability to facilitate agonist-induced plasma membrane localisation of sphingosine kinase 1 (SK1), a location where SK1 is known to elicit oncogenic signalling. Thus, we examined the role this may play in oncogenesis. Consistent with these findings, we demonstrated here that over-expression of CIB1 by itself is sufficient to drive localisation of SK1 to the plasma membrane and enhance the membrane-associated enzymatic activity of SK1, as well as its oncogenic signalling. We subsequently demonstrated that elevated levels of CIB1 resulted in full neoplastic transformation, in a manner dependent on SK1. In agreement with our previous findings that SK1 is a downstream mediator of oncogenic signalling by Ras, we found that targeting CIB1 also inhibited neoplastic growth of cells induced by oncogenic Ras, suggesting an important pro-tumorigenic role for CIB1. Thus, we have demonstrated for the first time a role for CIB1 in neoplastic transformation, and revealed a novel mechanism facilitating oncogenic signalling by Ras and SK1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Naik UP, Patel PM, Parise LV . Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 1997; 272: 4651–4654.

    Article  CAS  PubMed  Google Scholar 

  2. Yamniuk AP, Vogel HJ . Insights into the structure and function of calcium- and integrin-binding proteins. Calcium Binding Proteins 2006; 1: 150–155.

    Google Scholar 

  3. Naik MU, Nigam A, Manrai P, Millili P, Czymmek K, Sullivan M et al. CIB1 deficiency results in impaired thrombosis: the potential role of CIB1 in outside-in signaling through integrin alpha IIb beta 3. J Thromb Haemost 2009; 7: 1906–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shock DD, Naik UP, Brittain JE, Alahari SK, Sondek J, Parise LV . Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem J 1999; 342 (Pt 3): 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jarman KE, Moretti PA, Zebol JR, Pitson SM . Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 2010; 285: 483–492.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer T, York JD . Calcium-myristoyl switches turn on new lights. Nat Cell Biol 1999; 1: E93–E95.

    Article  CAS  PubMed  Google Scholar 

  7. Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 2005; 201: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Junrong T, Huancheng Z, Feng H, Yi G, Xiaoqin Y, Zhengmao L et al. Proteomic identification of CIB1 as a potential diagnostic factor in hepatocellular carcinoma. J Biosci 2011; 36: 659–668.

    Article  PubMed  Google Scholar 

  9. Naik MU, Pham NT, Beebe K, Dai W, Naik UP . Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int J Cancer 2011; 128: 587–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagayoshi Y, Nakamura M, Matsuoka K, Ohtsuka T, Mori Y, Kono H et al. Profiling of autoantibodies in sera of pancreatic cancer patients. Ann Surg Oncol 2014; 21 (Suppl 3): S459–S465.

    Article  PubMed  Google Scholar 

  11. Yuan W, Leisner TM, McFadden AW, Clark S, Hiller S, Maeda N et al. CIB1 is essential for mouse spermatogenesis. Mol Cell Biol 2006; 26: 8507–8514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zayed MA, Yuan W, Chalothorn D, Faber JE, Parise LV . Tumor growth and angiogenesis is impaired in CIB1 knockout mice. J Angiogenes Res 2010; 2: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zayed MA, Yuan W, Leisner TM, Chalothorn D, McFadden AW, Schaller MD et al. CIB1 regulates endothelial cells and ischemia-induced pathological and adaptive angiogenesis. Circ Res 2007; 101: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  14. Armacki M, Joodi G, Nimmagadda SC, de Kimpe L, Pusapati GV, Vandoninck S et al. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis. Oncogene 2013; 33: 1167–1180.

    Article  PubMed  Google Scholar 

  15. Leisner TM, Moran C, Holly SP, Parise LV . CIB1 prevents nuclear GAPDH accumulation and non-apoptotic tumor cell death via AKT and ERK signaling. Oncogene 2013; 32: 4017–4027.

    Article  CAS  PubMed  Google Scholar 

  16. Black JL, Harrell JC, Leisner TM, Fellmeth MJ, George SD, Reinhold D et al. CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat 2015; 152: 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  19. Gyorffy B, Surowiak P, Budczies J, Lanczky A . Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8: e82241.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prior IA, Lewis PD, Mattos C . A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72: 2457–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  23. Al-Jehani RM, Jeyarajah AR, Hagen B, Hogdall EV, Oram DH, Jacobs IJ . Model for the molecular genetic diagnosis of endometrial cancer using K-ras mutation analysis. J Natl Cancer Inst 1998; 90: 540–542.

    Article  CAS  PubMed  Google Scholar 

  24. Consortium EP . An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  25. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deng T, Karin M . c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 1994; 371: 171–175.

    Article  CAS  PubMed  Google Scholar 

  27. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon KW, Cho JH, Lee JK, Kang YH, Chae JS, Kim YM et al. CIB1 functions as a Ca(2+)-sensitive modulator of stress-induced signaling by targeting ASK1. Proc Natl Acad Sci USA 2009; 106: 17389–17394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 2008; 112: 1382–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gault CR, Eblen ST, Neumann CA, Hannun YA, Obeid LM . Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1-dependent manner. J Biol Chem 2012; 287: 31794–31803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams DR, Pyne S, Pyne NJ . Sphingosine kinases: emerging structure-function insights. Trends Biochem Sci 2016; 41: 395–409.

    Article  CAS  PubMed  Google Scholar 

  32. Pitman MR, Powell JA, Coolen C, Moretti PA, Zebol JR, Pham DH et al. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 2015; 6: 7065–7083.

    Article  PubMed  PubMed Central  Google Scholar 

  33. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–5969.

    CAS  PubMed  Google Scholar 

  34. Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 2000; 275: 33945–33950.

    Article  CAS  PubMed  Google Scholar 

  35. Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW et al. An oncogenic role of sphingosine kinase. Curr Biol 2000; 10: 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  36. Naik MU, Naik UP . Contra-regulation of calcium- and integrin-binding protein 1-induced cell migration on fibronectin by PAK1 and MAP kinase signaling. J Cell Biochem 2011; 112: 3289–3299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pitson SM . Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011; 36: 97–107.

    Article  CAS  PubMed  Google Scholar 

  38. Pyne NJ, Pyne S . Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10: 489–503.

    Article  CAS  PubMed  Google Scholar 

  39. Heffernan-Stroud LA, Obeid LM . Sphingosine kinase 1 in cancer. Adv Cancer Res 2013; 117: 201–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003; 22: 5491–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pitman MR, Barr RK, Gliddon BL, Magarey AM, Moretti PA, Pitson SM . A critical role for the protein phosphatase 2A B'alpha regulatory subunit in dephosphorylation of sphingosine kinase 1. Int J Biochem Cell Biol 2011; 43: 342–347.

    Article  CAS  PubMed  Google Scholar 

  42. Powell JA, Thomas D, Barry EF, Kok CH, McClure BJ, Tsykin A et al. Expression profiling of a hemopoietic cell survival transcriptome implicates osteopontin as a functional prognostic factor in AML. Blood 2009; 114: 4859–4870.

    Article  CAS  PubMed  Google Scholar 

  43. Di Fiore F, Blanchard F, Charbonnier F, Le Pessot F, Lamy A, Galais MP et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 2007; 96: 1166–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J . R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997; 7: 63–70.

    Article  CAS  PubMed  Google Scholar 

  45. Plowman SJ, Ariotti N, Goodall A, Parton RG, Hancock JF . Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol Cell Biol 2008; 28: 4377–4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pitman MR, Pham DH, Pitson SM . Isoform-selective assays for sphingosine kinase activity. Methods Mol Biol 2012; 874: 21–31.

    Article  CAS  PubMed  Google Scholar 

  47. Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 2004; 279: 52487–52492.

    Article  CAS  PubMed  Google Scholar 

  48. Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M . A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett 1995; 375: 125–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fay Fuller Foundation, Project Grant (1004695) and Senior Research Fellowships (508098 and 1042589) from the National Health and Medical Research Council of Australia (to SMP), NIH 1R01HL092544 (to LVP), University of Adelaide Graduate Research and Research Training Scheme Scholarships (to WZ), an Australian Postgraduate Award and Royal Adelaide Hospital (RAH) Dawes Scholarship (to KEJ) and a RAH Research Foundation Early Career Fellowship (to MRP). We thank J Downward (Imperial Cancer Research Fund, London) and R Parton (Institute for Molecular Bioscience, Brisbane) for providing the H- and KRas plasmids, respectively, and M Okabe (Osaka University) for providing the pCX-EGFP plasmid. Some of the data shown are based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

Author contributions

Conception and design by W Zhu, GL Gliddon, K Jarman and SM Pitson. Development of methodology by W Zhu, GL Gliddon, MR Pitman and SM Pitson. Acquisition of data (provided animals, acquired and managed patients, provided facilities and so on.) by W Zhu, GL Gliddon, K Jarman, PAB Moretti, T Tin, LV Parise, JM Woodcock, JA Powell and A Ruszkiewicz. Analysis and interpretation of data (for example, statistical analysis, biostatistics and computational analysis) by W Zhu, GL Gliddon, K Jarman, JM Woodcock, JA Powell, A Ruszkiewicz, MR Pitman and SM Pitson. Writing, review and/or revision of the manuscript by W Zhu, GL Gliddon, LV Parise, A Ruszkiewicz, JM Woodcock, MR Pitman and SM Pitson. Administrative, technical or material support (that is, reporting or organizing data and constructing databases) by W Zhu, GL Gliddon, K Jarman and SM Pitson. Study supervision by MR Pitman, GL Gliddon and SM Pitson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Pitson.

Ethics declarations

Competing interests

LV Parise is a cofounder of Reveris Therapeutics.

Additional information

Supplementary Information accompanies this paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Gliddon, B., Jarman, K. et al. CIB1 contributes to oncogenic signalling by Ras via modulating the subcellular localisation of sphingosine kinase 1. Oncogene 36, 2619–2627 (2017). https://doi.org/10.1038/onc.2016.428

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.428

This article is cited by

Search

Quick links