Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer

Abstract

The accumulation of myeloid-derived suppressor cells (MDSCs) has been observed in solid tumors and is correlated with tumor progression; however, the underlying mechanism is still poorly understood. In this study, we identified a mechanism by which tumor cells induce MDSC accumulation and expansion in the bladder cancer (BC) microenvironment via CXCL2/MIF-CXCR2 signaling. Elevated expression of CXCL2 and MIF and an increased number of CD33+ MDSCs were detected in BC tissues, and these increases were significantly associated with advanced disease stage and poor patient prognosis (P<0.01). A positive association was observed between CXCL2 or MIF expression and the number of tumor-infiltrating CD33+ MDSCs (P<0.01). Subsequently, we demonstrated that CD45+CD33+CD11b+HLA-DR MDSCs from fresh BC tissues displayed high levels of suppressive molecules, including Arg1, iNOS, ROS, PDL-1 and P-STAT3, and stronger suppression of T-cell proliferation. Interestingly, these CD45+CD33+CD11b+HLA-DR MDSCs exhibited increased CXCR2 expression compared with that in peripheral blood from BC patients or healthy controls (P<0.05). Chemotaxis assay revealed that bladder cancer cell line J82 induced MDSC migration via CXCL2/MIF-CXCR2 signaling in vitro. Mechanistic studies demonstrated that J82-induced MDSC trafficking and CXCR2 expression were associated with increased phosphorylation of p38, ERK and p65. Conversely, inhibition of the phosphorylation of p38, ERK or p65 decreased J82-induced MDSC trafficking and CXCR2 expression. CXCL2/MIF-stimulated activation of the mitogen-activated protein kinase and nuclear factor kappa B pathways in MDSCs was MyD88 dependent. Overall, our results identify the CXCL2/MIF-CXCR2 axis as an important mediator in MDSC recruitment and as predictors and potential therapeutic targets in BC patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vashistha V, Quinn DI, Dorff TB, Daneshmand S . Current and recent clinical trials for perioperative systemic therapy for muscle invasive bladder cancer: a systematic review. BMC Cancer 2014; 14: 966.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaplan AL, Litwin MS, Chamie K . The future of bladder cancer care in the USA. Nat Rev Urol 2014; 11: 59–62.

    Article  PubMed  Google Scholar 

  3. Zhang ZL, Dong P, Li YH, Liu ZW, Yao K, Han H et al. Radical cystectomy for bladder cancer: oncologic outcome in 271 Chinese patients. Chin J Cancer 2014; 33: 165–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P . Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Redelman-Sidi G, Glickman MS, Bochner BH . The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat Rev Urol 2014; 11: 153–162.

    Article  CAS  PubMed  Google Scholar 

  6. Errico A . Immunotherapy: PD-1-PD-L1 axis: efficient checkpoint blockade against cancer. Nat Rev Clin Oncol 2015; 12: 63.

    Article  PubMed  Google Scholar 

  7. Becht E, Goc J, Germain C, Giraldo NA, Dieu-Nosjean MC, Sautes-Fridman C et al. Shaping of an effective immune microenvironment to and by cancer cells. Cancer Immunol Immunother 2014; 63: 991–997.

    Article  CAS  PubMed  Google Scholar 

  8. Liakou CI, Narayanan S, Ng Tang D, Logothetis CJ, Sharma P . Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human bladder cancer. Cancer Immun 2007; 7: 10.

    PubMed  PubMed Central  Google Scholar 

  9. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P et al. Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 2012; 130: 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  10. Huang L, Wu RL, Xu AM . Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res 2015; 7: 2141–2158.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Talmadge JE . Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 2007; 13: 5243–5248.

    Article  CAS  PubMed  Google Scholar 

  12. Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun 2016; 7: 10517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin M, Huang J, Shi Y, Xiao Y, Guo T . Influential factors and synergies for radiation-gene therapy on cancer. Anal Cell Pathol 2015; 2015: 313145.

    Article  Google Scholar 

  14. Gabrilovich D, Nefedova Y . ROR1C regulates differentiation of myeloid-derived suppressor cells. Cancer Cell 2015; 28: 147–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 2014; 6: 237ra267.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jablonska J, Wu CF, Andzinski L, Leschner S, Weiss S . CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer 2014; 134: 1346–1358.

    Article  CAS  PubMed  Google Scholar 

  17. Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z et al. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 2007; 252: 86–92.

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Disc 2016; 6: 80–95.

    Article  Google Scholar 

  19. Huang JR, Tsai YC, Chang YJ, Wu JC, Hung JT, Lin KH et al. Alpha-galactosylceramide but not phenyl-glycolipids induced NKT cell anergy and IL-33-mediated myeloid-derived suppressor cell accumulation via upregulation of egr2/3. J Immunol 2014; 192: 1972–1981.

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell D, Olive C . Regulation of Toll-like receptor-induced chemokine production in murine dendritic cells by mitogen-activated protein kinases. Mol Immunol 2010; 47: 2065–2073.

    Article  CAS  PubMed  Google Scholar 

  21. Dubois RN . Role of inflammation and inflammatory mediators in colorectal cancer. Trans Am Clin Climatol Assoc 2014; 125: 358–372.

    PubMed  PubMed Central  Google Scholar 

  22. Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H et al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res 2013; 73: 5633–5646.

    Article  CAS  PubMed  Google Scholar 

  23. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell RA, Yaddanapudi K . Stromal-dependent tumor promotion by MIF family members. Cell Signal 2014; 26: 2969–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA . Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 2007; 67: 186–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH et al. HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood 2008; 111: 3343–3354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W et al. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 2015; 13: 47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Veirman K, Van Valckenborgh E, Lahmar Q, Geeraerts X, De Bruyne E, Menu E et al. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol 2014; 4: 349.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang J, Guo W, Liang X . Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol 2014; 75: 1128–1137.

    Article  CAS  PubMed  Google Scholar 

  30. Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013; 39: 611–621.

    Article  CAS  PubMed  Google Scholar 

  31. Santegoets SJ, Stam AG, Lougheed SM, Gall H, Jooss K, Sacks N et al. Myeloid derived suppressor and dendritic cell subsets are related to clinical outcome in prostate cancer patients treated with prostate GVAX and ipilimumab. J Immunother Cancer 2014; 2: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 2015; 12: 244–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL . Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 2012; 381: 14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu P, Wu D, Ni C, Ye J, Chen W, Hu G et al. GammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 2014; 40: 785–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H et al. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/alphaCD40 therapy. J Immunol 2014; 192: 5821–5829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mao Y, Poschke I, Wennerberg E, Pico de Coana Y, Egyhazi Brage S, Schultz I et al. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 2013; 73: 3877–3887.

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 2013; 190: 3783–3797.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL . Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 2013; 190: 794–804.

    Article  CAS  PubMed  Google Scholar 

  39. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182: 5693–5701.

    Article  CAS  PubMed  Google Scholar 

  40. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009; 69: 2514–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211: 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Li ZL, Ye SB, Ouyang LY, Chen YS, He J et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother 2015; 64: 1587–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shang K, Bai YP, Wang C, Wang Z, Gu HY, Du X et al. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One 2012; 7: e51848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto M, Kikuchi H, Ohta M, Kawabata T, Hiramatsu Y, Kondo K et al. TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res 2008; 68: 9754–9762.

    Article  CAS  PubMed  Google Scholar 

  45. Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK signalling. Pharmacol Res 2015; 99: 63–73.

    Article  CAS  PubMed  Google Scholar 

  46. Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE et al. MyD88 mediates neutrophil recruitment initiated by IL-1 R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 2006; 24: 79–91.

    Article  CAS  PubMed  Google Scholar 

  47. Hong EH, Chang SY, Lee BR, Kim YS, Lee JM, Kang CY et al. Blockade of Myd88 signaling induces antitumor effects by skewing the immunosuppressive function of myeloid-derived suppressor cells. Int J Cancer 2013; 132: 2839–2848.

    Article  CAS  PubMed  Google Scholar 

  48. Li ZL, Ye SB, OuYang LY, Zhang H, Chen YS, He J et al. COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncoimmunology 2015; 4: e1044712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Basic Research Program of China (2014CB745200) of the National Natural Science Foundation of China and the General Program (Grant Nos. 81572982, 81372442 and 81172164, to LJ) and the Sci-Tech Key Program of the Shenzheng City Science Foundation (Grant No. 2014041470821172, to LJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R-F Wang or J Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ye, YL., Li, MX. et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36, 2095–2104 (2017). https://doi.org/10.1038/onc.2016.367

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.367

This article is cited by

Search

Quick links