Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Preclinical and clinical evaluation of MET functions in cancer cells and in the tumor stroma

Abstract

A lot of attention has been dedicated to investigate the role of the tyrosine kinase receptor MET in tumors. The acquired notion that cancer cells from different histological origin strictly rely on the engagement of this specific oncogene for their growth and survival has certainly justified the development and the use of MET-targeted therapies in the clinic. However, the function and involvement of this pathway in the stroma (that often constitutes >50% of the global cellularity of the tumor) may offer the opportunity to conceive new patient stratification criteria, rational drug design and guided trials of new combination treatments. In this review, we will summarize and discuss the role of MET in cancer cells but especially in different stromal compartments, in light of the results showed by past and recent preclinical and clinical trials with anti-MET drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM . Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 1989; 339: 155–156.

    CAS  PubMed  Google Scholar 

  2. Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N . Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett 1993; 328: 25–29.

    CAS  PubMed  Google Scholar 

  3. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804.

    CAS  PubMed  Google Scholar 

  4. Trusolino L, Bertotti A, Comoglio PM . MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

    CAS  PubMed  Google Scholar 

  5. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT . Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 1994; 269: 11216–11223.

    CAS  PubMed  Google Scholar 

  6. Mars WM, Zarnegar R, Michalopoulos GK . Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 1993; 143: 949–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsumoto K, Nakamura T . Emerging multipotent aspects of hepatocyte growth factor. J Biochem 1996; 119: 591–600.

    CAS  PubMed  Google Scholar 

  8. Galimi F, Cottone E, Vigna E, Arena N, Boccaccio C, Giordano S et al. Hepatocyte growth factor is a regulator of monocyte-macrophage function. J Immunol 2001; 166: 1241–1247.

    CAS  PubMed  Google Scholar 

  9. Kurz SM, Diebold SS, Hieronymus T, Gust TC, Bartunek P, Sachs M et al. The impact of c-met/scatter factor receptor on dendritic cell migration. Eur J Immunol 2002; 32: 1832–1838.

    CAS  PubMed  Google Scholar 

  10. Ovali E, Ratip S, Kibaroglu A, Tekelioglu Y, Cetiner M, Karti S et al. Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells. Haematologica 2000; 85: 464–469.

    CAS  PubMed  Google Scholar 

  11. van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST . Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med 1997; 185: 2121–2131.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995; 373: 699–702.

    CAS  PubMed  Google Scholar 

  13. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995; 373: 702–705.

    CAS  PubMed  Google Scholar 

  14. Ueno M, Lee LK, Chhabra A, Kim YJ, Sasidharan R, Van Handel B et al. c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface. Dev Cell 2013; 27: 373–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Birchmeier C, Gherardi E . Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998; 8: 404–410.

    CAS  PubMed  Google Scholar 

  16. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C . Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768–771.

    CAS  PubMed  Google Scholar 

  17. Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R . Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 1997; 11: 3341–3350.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallo S, Sala V, Gatti S, Crepaldi T . Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci (Lond) 2015; 129: 1173–1193.

    CAS  Google Scholar 

  19. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS . Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 2004; 101: 4477–4482.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsumoto K, Nakamura T . Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 2001; 59: 2023–2038.

    CAS  PubMed  Google Scholar 

  21. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–443.

    CAS  PubMed  Google Scholar 

  22. Ueda H, Nakamura T, Matsumoto K, Sawa Y, Matsuda H . A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc Res 2001; 51: 41–50.

    CAS  PubMed  Google Scholar 

  23. Liu Y . Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004; 287: F7–16.

    CAS  PubMed  Google Scholar 

  24. Chang H, Nagao T, Ichikawa N, Kawamoto T, Nakamura T, Kurokawa K et al. Blood hepatocyte growth factor levels in chronic renal failure patients. Nephron 1994; 67: 497–498.

    CAS  PubMed  Google Scholar 

  25. Shiota G, Okano J, Kawasaki H, Kawamoto T, Nakamura T . Serum hepatocyte growth factor levels in liver diseases: clinical implications. Hepatology 1995; 21: 106–112.

    CAS  PubMed  Google Scholar 

  26. Takada S, Namiki M, Takahara S, Matsumiya K, Kondoh N, Kokado Y et al. Serum HGF levels in acute renal rejection after living related renal transplantation. Transpl Int 1996; 9: 151–154.

    CAS  PubMed  Google Scholar 

  27. Tomiya T, Tani M, Yamada S, Hayashi S, Umeda N, Fujiwara K . Serum hepatocyte growth factor levels in hepatectomized and nonhepatectomized surgical patients. Gastroenterology 1992; 103: 1621–1624.

    CAS  PubMed  Google Scholar 

  28. Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S et al. c-Met is essential for wound healing in the skin. J Cell Biol 2007; 177: 151–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311: 29–33.

    CAS  PubMed  Google Scholar 

  30. Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G . Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 1987; 84: 6379–6383.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Corso S, Giordano S . Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 2013; 3: 978–992.

    CAS  PubMed  Google Scholar 

  32. Soman NR, Correa P, Ruiz BA, Wogan GN . The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA 1991; 88: 4892–4896.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters S, Adjei AA . MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol 2012; 9: 314–326.

    CAS  PubMed  Google Scholar 

  34. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.

    CAS  PubMed  Google Scholar 

  35. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 1999; 18: 2343–2350.

    CAS  PubMed  Google Scholar 

  36. Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D . Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 1997; 14: 2417–2423.

    CAS  PubMed  Google Scholar 

  37. Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W et al. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci USA 2011; 108: 14240–14245.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 2009; 15: 59–67.

    CAS  PubMed  Google Scholar 

  39. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 2008; 283: 33394–33405.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Migliore C, Martin V, Leoni VP, Restivo A, Atzori L, Petrelli A et al. MiR-1 downregulation cooperates with MACC1 in promoting MET overexpression in human colon cancer. Clin Cancer Res 2012; 18: 737–747.

    CAS  PubMed  Google Scholar 

  41. Zhu X, Humphrey PA . Overexpression and regulation of expression of scatter factor/hepatocyte growth factor in prostatic carcinoma. Urology 2000; 56: 1071–1074.

    CAS  PubMed  Google Scholar 

  42. Seidel C, Borset M, Hjorth-Hansen H, Sundan A, Waage A . Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 1998; 15: 145–153.

    CAS  PubMed  Google Scholar 

  43. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57: 5391–5398.

    CAS  PubMed  Google Scholar 

  44. Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A . Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 1996; 271: 24655–24661.

    CAS  PubMed  Google Scholar 

  45. Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E et al. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med 2012; 18: 1118–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortner J, Vande Woude GF, Rong S . The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS 1995; 74: 89–121.

    CAS  PubMed  Google Scholar 

  47. Ma J, DeFrances MC, Zou C, Johnson C, Ferrell R, Zarnegar R . Somatic mutation and functional polymorphism of a novel regulatory element in the HGF gene promoter causes its aberrant expression in human breast cancer. J Clin Invest 2009; 119: 478–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE . Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 1996; 148: 225–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Abounader R, Ranganathan S, Kim BY, Nichols C, Laterra J . Signaling pathways in the induction of c-met receptor expression by its ligand scatter factor/hepatocyte growth factor in human glioblastoma. J Neurochem 2001; 76: 1497–1508.

    CAS  PubMed  Google Scholar 

  50. Zhang YW, Su Y, Volpert OV, Vande Woude GF . Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 2003; 100: 12718–12723.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabinovitz I, Mercurio AM . The integrin alpha 6 beta 4 and the biology of carcinoma. Biochem Cell Biol 1996; 74: 811–821.

    CAS  PubMed  Google Scholar 

  52. Trusolino L, Bertotti A, Comoglio PM . A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 2001; 107: 643–654.

    CAS  PubMed  Google Scholar 

  53. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011; 278: 1429–1443.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002; 4: 720–724.

    CAS  PubMed  Google Scholar 

  55. Valente G, Nicotra G, Arrondini M, Castino R, Capparuccia L, Prat M et al. Co-expression of plexin-B1 and Met in human breast and ovary tumours enhances the risk of progression. Cell Oncol 2009; 31: 423–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen CT, Kim H, Liska D, Gao S, Christensen JG, Weiser MR . MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther 2012; 11: 660–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    CAS  PubMed  Google Scholar 

  58. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012; 2: 270–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 2008; 68: 9479–9487.

    CAS  PubMed  Google Scholar 

  61. Kumai T, Matsuda Y, Ohkuri T, Oikawa K, Ishibashi K, Aoki N et al. c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncoimmunology 2015; 4: e976077.

    PubMed  PubMed Central  Google Scholar 

  62. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629–641.

    CAS  PubMed  Google Scholar 

  63. Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 2004; 6: 61–73.

    CAS  PubMed  Google Scholar 

  64. Silvagno F, Follenzi A, Arese M, Prat M, Giraudo E, Gaudino G et al. In vivo activation of met tyrosine kinase by heterodimeric hepatocyte growth factor molecule promotes angiogenesis. Arterioscler Thromb Vasc Biol 1995; 15: 1857–1865.

    CAS  PubMed  Google Scholar 

  65. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 2015; 522: 349–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E et al. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest 1999; 79: 427–438.

    CAS  PubMed  Google Scholar 

  67. Comoglio PM, Giordano S, Trusolino L . Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7: 504–516.

    CAS  PubMed  Google Scholar 

  68. Matsumoto K, Nakamura T . Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem Biophys Res Commun 2005; 333: 316–327.

    CAS  PubMed  Google Scholar 

  69. Matsumoto K, Nakamura T . NK4 gene therapy targeting HGF-Met and angiogenesis. Front Biosci 2008; 13: 1943–1951.

    CAS  PubMed  Google Scholar 

  70. Camussi G, Montrucchio G, Lupia E, Soldi R, Comoglio PM, Bussolino F . Angiogenesis induced in vivo by hepatocyte growth factor is mediated by platelet-activating factor synthesis from macrophages. J Immunol 1997; 158: 1302–1309.

    CAS  PubMed  Google Scholar 

  71. Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC . Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 2006; 108: 1260–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu Y, Wilkinson FL, Kirton JP, Jeziorska M, Iizasa H, Sai Y et al. Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J Pathol 2007; 212: 12–19.

    CAS  PubMed  Google Scholar 

  73. Yen BL, Yen ML, Hsu PJ, Liu KJ, Wang CJ, Bai CH et al. Multipotent Human Mesenchymal Stromal Cells Mediate Expansion of Myeloid-Derived Suppressor Cells via Hepatocyte Growth Factor/c-Met and STAT3. Stem Cell Reports 2013; 1: 139–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tesio M, Golan K, Corso S, Giordano S, Schajnovitz A, Vagima Y et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 2011; 117: 419–428.

    CAS  PubMed  Google Scholar 

  75. Galimi F, Bagnara GP, Bonsi L, Cottone E, Follenzi A, Simeone A et al. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. J Cell Biol 1994; 127: 1743–1754.

    CAS  PubMed  Google Scholar 

  76. Chen Q, DeFrances MC, Zarnegar R . Induction of met proto-oncogene (hepatocyte growth factor receptor) expression during human monocyte-macrophage differentiation. Cell Growth Differ 1996; 7: 821–832.

    CAS  PubMed  Google Scholar 

  77. Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H et al. Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res 2005; 96: 823–830.

    CAS  PubMed  Google Scholar 

  78. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T . Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000; 106: 1511–1519.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Okunishi K, Dohi M, Fujio K, Nakagome K, Tabata Y, Okasora T et al. Hepatocyte growth factor significantly suppresses collagen-induced arthritis in mice. J Immunol 2007; 179: 5504–5513.

    CAS  PubMed  Google Scholar 

  80. Kuroiwa T, Kakishita E, Hamano T, Kataoka Y, Seto Y, Iwata N et al. Hepatocyte growth factor ameliorates acute graft-versus-host disease and promotes hematopoietic function. J Clin Invest 2001; 107: 1365–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gong R, Rifai A, Dworkin LD . Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease: targeting the inflamed vascular endothelium. J Am Soc Nephrol 2006; 17: 2464–2473.

    CAS  PubMed  Google Scholar 

  82. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T . Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101: 1827–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh K, Iimuro Y, Takeuchi M, Kaneda Y, Iwasaki T, Terada N et al. Ameliorating effect of hepatocyte growth factor on inflammatory bowel disease in a murine model. Am J Physiol Gastrointest Liver Physiol 2005; 288: G729–G735.

    CAS  PubMed  Google Scholar 

  84. Mizuno S, Matsumoto K, Li MY, Nakamura T . HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J 2005; 19: 580–582.

    PubMed  Google Scholar 

  85. Yamaura K, Ito K, Tsukioka K, Wada Y, Makiuchi A, Sakaguchi M et al. Suppression of acute and chronic rejection by hepatocyte growth factor in a murine model of cardiac transplantation: induction of tolerance and prevention of cardiac allograft vasculopathy. Circulation 2004; 110: 1650–1657.

    CAS  PubMed  Google Scholar 

  86. Ito W, Kanehiro A, Matsumoto K, Hirano A, Ono K, Maruyama H et al. Hepatocyte growth factor attenuates airway hyperresponsiveness, inflammation, and remodeling. Am J Respir Cell Mol Biol 2005; 32: 268–280.

    CAS  PubMed  Google Scholar 

  87. Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K et al. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 2005; 175: 4745–4753.

    CAS  PubMed  Google Scholar 

  88. Benkhoucha M, Molnarfi N, Schneiter G, Walker PR, Lalive PH . The neurotrophic hepatocyte growth factor attenuates CD8+ cytotoxic T-lymphocyte activity. J Neuroinflammation 2013; 10: 154.

    PubMed  PubMed Central  Google Scholar 

  89. Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi H, Nakamura T et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2010; 107: 6424–6429.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH, Ho LJ et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol 2014; 96: 295–303.

    PubMed  Google Scholar 

  91. Aguilar-Valenzuela R, Carlsen ED, Liang Y, Soong L, Sun J . Hepatocyte growth factor in dampening liver immune-mediated pathology in acute viral hepatitis without compromising antiviral activity. J Gastroenterol Hepatol 2014; 29: 878–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Adams DH, Harvath L, Bottaro DP, Interrante R, Catalano G, Tanaka Y et al. Hepatocyte growth factor and macrophage inflammatory protein 1 beta: structurally distinct cytokines that induce rapid cytoskeletal changes and subset-preferential migration in T cells. Proc Natl Acad Sci USA 1994; 91: 7144–7148.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Skibinski G, Skibinska A, James K . The role of hepatocyte growth factor and its receptor c-met in interactions between lymphocytes and stromal cells in secondary human lymphoid organs. Immunology 2001; 102: 506–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    CAS  PubMed  Google Scholar 

  95. Tamura S, Sugawara T, Tokoro Y, Taniguchi H, Fukao K, Nakauchi H et al. Expression and function of c-Met, a receptor for hepatocyte growth factor, during T-cell development. Scand J Immunol 1998; 47: 296–301.

    CAS  PubMed  Google Scholar 

  96. Komarowska I, Coe D, Wang G, Haas R, Mauro C, Kishore M et al. Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release. Immunity 2015; 42: 1087–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Beilmann M, Odenthal M, Jung W, Vande Woude GF, Dienes HP, Schirmacher P . Neoexpression of the c-met/hepatocyte growth factor-scatter factor receptor gene in activated monocytes. Blood 1997; 90: 4450–4458.

    CAS  PubMed  Google Scholar 

  98. Moransard M, Sawitzky M, Fontana A, Suter T . Expression of the HGF receptor c-met by macrophages in experimental autoimmune encephalomyelitis. Glia 2010; 58: 559–571.

    PubMed  Google Scholar 

  99. Zhao L, Wu Y, Xie XD, Chu YF, Li JQ, Zheng L . c-Met identifies a population of matrix metalloproteinase 9-producing monocytes in peritumoural stroma of hepatocellular carcinoma. J Pathol 2015; 237: 319–329.

    CAS  PubMed  Google Scholar 

  100. Beilmann M, Vande Woude GF, Dienes HP, Schirmacher P . Hepatocyte growth factor-stimulated invasiveness of monocytes. Blood 2000; 95: 3964–3969.

    CAS  PubMed  Google Scholar 

  101. Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol 2013; 14: 55–63.

    CAS  PubMed  Google Scholar 

  102. Coudriet GM, He J, Trucco M, Mars WM, Piganelli JD . Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases. PLoS One 2010; 5: e15384.

    PubMed  PubMed Central  Google Scholar 

  103. Baek JH, Birchmeier C, Zenke M, Hieronymus T . The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol 2012; 189: 1699–1707.

    CAS  PubMed  Google Scholar 

  104. Falenta K, Rodaway A, Jones GE, Wells CM . Imaging haematopoietic cells recruitment to an acute wound in vivo identifies a role for c-Met signalling. J Microsc 2013; 250: 200–209.

    CAS  PubMed  Google Scholar 

  105. Jiang W, Puntis MC, Nakamura T, Hallett MB . Neutrophil priming by hepatocyte growth factor, a novel cytokine. Immunology 1992; 77: 147–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mine S, Tanaka Y, Suematu M, Aso M, Fujisaki T, Yamada S et al. Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1. Lab Invest 1998; 78: 1395–1404.

    CAS  PubMed  Google Scholar 

  107. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R . Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011; 20: 300–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 2015; 10: 562–573.

    CAS  PubMed  Google Scholar 

  109. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015; 522: 345–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wculek SK, Malanchi I . Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 2015; 528: 413–417.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 2009; 16: 183–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Harrison P, Bradley L, Bomford A . Mechanism of regulation of HGF/SF gene expression in fibroblasts by TGF-beta1. Biochem Biophys Res Commun 2000; 271: 203–211.

    CAS  PubMed  Google Scholar 

  113. Mungunsukh O, Day RM . Transforming growth factor-beta1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell 2013; 24: 2088–2097.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vodovotz Y, Bogdan C, Paik J, Xie QW, Nathan C . Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med 1993; 178: 605–613.

    CAS  PubMed  Google Scholar 

  115. Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ . The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Onco Targets Ther 2014; 7: 969–983.

    PubMed  PubMed Central  Google Scholar 

  116. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano S . Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 2008; 27: 684–693.

    CAS  PubMed  Google Scholar 

  117. Scagliotti GV, Di Maio M . Tivantinib added to erlotinib in nonsmall-cell lung cancer: the primary end point was not MET. Ann Oncol 2015; 26: 2007–2009.

    CAS  PubMed  Google Scholar 

  118. Garber K . MET inhibitors start on road to recovery. Nat Rev Drug Discov 2014; 13: 563–565.

    CAS  PubMed  Google Scholar 

  119. Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 2014; 15: 1007–1018.

    CAS  PubMed  Google Scholar 

  120. Haber DA, Gray NS, Baselga J . The evolving war on cancer. Cell 2011; 145: 19–24.

    CAS  PubMed  Google Scholar 

  121. Lennerz JK, Kwak EL, Ackerman A, Michael M, Fox SB, Bergethon K et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol 2011; 29: 4803–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Choueiri TK, Vaishampayan U, Rosenberg JE, Logan TF, Harzstark AL, Bukowski RM et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 2013; 31: 181–186.

    CAS  PubMed  Google Scholar 

  123. Abken H . Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 2015; 7: 535–544.

    CAS  PubMed  Google Scholar 

  124. Feldman SA, Assadipour Y, Kriley I, Goff SL, Rosenberg SA . Adoptive cell therapy–tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors. Semin Oncol 2015; 42: 626–639.

    PubMed  PubMed Central  Google Scholar 

  125. Jensen MC, Riddell SR . Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 2015; 33: 9–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME . Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Castoldi R, Ecker V, Wiehle L, Majety M, Busl-Schuller R, Asmussen M et al. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32: 5593–5601.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kontermann RE, Brinkmann U . Bispecific antibodies. Drug Discov Today 2015; 20: 838–847.

    CAS  PubMed  Google Scholar 

  129. Wu YL, Yang JC-H, Kim D-W, Su W-C, Ahn M-J, Lee DH et al. Safety and efficacy of INC280 in combination with gefinitib in patients with EGFR mutated, MET-positive NSCLC: a single arm phase lb/II study. J Clin Oncol 2014; 32.

  130. Yoshioka H, Azuma K, Yamamoto N, Takahashi T, Nishio M, Katakami N et al. A randomized, double-blind, placebo-controlled, phase III trial of erlotinib with or without a c-Met inhibitor tivantinib (ARQ 197) in Asian patients with previously treated stage IIIB/IV nonsquamous nonsmall-cell lung cancer harboring wild-type epidermal growth factor receptor (ATTENTION study). Ann Oncol 2015; 26: 2066–2072.

    CAS  PubMed  Google Scholar 

  131. Tolaney SM, Tan S, Guo H, Barry W, Van Allen E, Wagle N et al. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs 2015; 33: 1108–1114.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Rutella S, Danese S, Leone G . Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006; 108: 1435–1440.

    CAS  PubMed  Google Scholar 

  133. Rosen LS, Senzer N, Mekhail T, Ganapathi R, Chai F, Savage RE et al. A phase I dose-escalation study of Tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clin Cancer Res 2011; 17: 7754–7764.

    CAS  PubMed  Google Scholar 

  134. Yap TA, Olmos D, Brunetto AT, Tunariu N, Barriuso J, Riisnaes R et al. Phase I trial of a selective c-MET inhibitor ARQ197 incorporating proof of mechanism pharmacodynamics studies. J Clin Oncol 2011; 29: 1271–1279.

    CAS  PubMed  Google Scholar 

  135. Goldman JW, Laux I, Chai F, Savage RE, Ferrari D, Garmey EG et al. Phase 1 dose-escalation trial evaluating the combination of the selective MET (mesenchymal-epithelial transition factor) inhibitor tivantinib (ARQ 197) plus erlotinib. Cancer 2012; 118: 5903–5911.

    CAS  PubMed  Google Scholar 

  136. Pant S, Saleh M, Bendell J, Infante JR, Jones S, Kurkjian CD et al. A phase I dose escalation study of oral c-MET inhibitor tivantinib (ARQ 197) in combination with gemcitabine in patients with solid tumors. Ann Oncol 2014; 25: 1416–1421.

    CAS  PubMed  Google Scholar 

  137. Zucali PA, Simonelli M, De Vincenzo F, Fatuzzo G, Bertossi M, Perrino M et al. Phase I trial of tivantinib in combination with carboplatin and pemetrexed as first-line treatment in patients with advanced nonsquamous non small cell lung cancer or malignant pleural mesothelioma. J Clin Oncol 2015; 33: 2549.

    Google Scholar 

  138. Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 2011; 29: 3307–3315.

    CAS  PubMed  Google Scholar 

  139. Feldman DR EL, Quinn DI, Loriot Y, Joffe JK, Vaughn DJ, Fléchon A et al. A phase 2 multicenter study of tivantinib monotherapy in patients with relapsed or refractory germ cell tumors. Invest New Drugs 2013; 31: 1016–1022.

    CAS  PubMed  Google Scholar 

  140. Kang YK, Muro K, Ryu MH, Yasui H, Nishina T, Ryoo BY et al. A phase II trial of a selective c-Met inhibitor tivantinib (ARQ 197) monotherapy as a second- or third-line therapy in the patients with metastatic gastric cancer. Invest New Drugs 2014; 32: 355–361.

    CAS  PubMed  Google Scholar 

  141. Pant S, Patel MR, Kurkijan C, Hemphill MB, Flores MRC . A phase II study of the c-Met inhibitor tivantinib in combination with FOLFOX for the treatment of patients with previously untreated metastatic adenocarcinoma of the distal esophagus, gastroesophageal (GE) junction, or stomach. J Clin Oncol 2015; 33: 4065.

    Google Scholar 

  142. Twardowski P, Plets M, Plimack ER, Agarwal N, Tangen CM, Vogelzang NJ et al. SWOG 1107: parallel (randomized) phase II evaluation of tivantinib (ARQ197) and tivantinib in combination with erlotinib in patients with papillary renal cell carcinoma (pRCC). J Clin Oncol 2015; 33: 4523.

    Google Scholar 

  143. Vokes EE, Worden FP, Adkins D, Bauman JE, Lim D, Sukari A et al. A randomized phase II trial of the MET inhibitor tivantinib+cetuximab versus cetuximab alone in patients with recurrent/metastatic head and neck cancer. J Clin Oncol 2015; 33: 6060.

    Google Scholar 

  144. Monk P, Liu G, Stadler WM, Geyer SM, Sexton JL, Wright JJ et al. Phase II randomized, double-blind, placebo controlled study of tivantinib in men with asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 2015; 33: 146.

    Google Scholar 

  145. Hirashima T, Azuma K, Yamamoto N, Takahashi T, Nishio M et al. Phase II study of erlotinib plus tivantinib in patients with RGFR-mutation-positive NSCLC who failed in immediately previuos EGFR-TKI therapy. J Clin Oncol 2014; 32: 8052.

    Google Scholar 

  146. Lolkema MP, Bohets HH, Arkenau HT, Lampo A, Barale E, de Jonge MJ et al. The c-Met Tyrosine Kinase Inhibitor JNJ-38877605 Causes Renal Toxicity through Species-Specific Insoluble Metabolite Formation. Clin Cancer Res 2015; 21: 2297–2304.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. McCoach CE, Yu A, Gandara DR, Riess J, Li T, Lara P et al. Phase I study of INC280 plus erlotinib in patients with MET expressing adenocarcinoma of the lung. J Clin Oncol 2015; 33: 2587.

    Google Scholar 

  148. Bang Y-J, Su W-C, Nam D-Y, Lim W-T, Bauer TM, Brana I et al. Phase I study of the safety and efficacy of INC280 in patients with advanced MET-dependent solid tumors. J Clin Oncol 2014; 32: 2520.

    Google Scholar 

  149. Hong DS, LoRusso P, Hamid O, Beaupre DM, Janku F, Khan R et al. First in human study of AMG 337, a highly selective oral inhibitor of MET, in adult patients with advanced solid tumors. J Clin Oncol 2014; 32: 2508.

    Google Scholar 

  150. Kwak EL, LoRusso P, Hamid O, Janku F, Kittaneh M, Catenacci DVT et al. Clinical activity of AMG 337, an oral MET kinase inhibitor, in adult patients with MET-amplified gastro-esophageal junction, gastric or esophageal cancer. J Clin Oncol 2015; 33: 1.

    Google Scholar 

  151. Falchook GS, Kurzrock R, Amin HM, Fu S, Piha-Paul SA, Janku F et al. Efficacy, safefy, biomarkers and phase II dose modeling in a phase I trial of the oral selective c-MET inhibitor tepotinib (MSC2156119J). J Clin Oncol 2015; 33: 2591.

    Google Scholar 

  152. Hong DS, Rosen P, Lockhart AC, Fu S, Janku F, Kurzrock R et al. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget 2015; 6: 18693–18706.

    PubMed  PubMed Central  Google Scholar 

  153. Gan HK, Lickliter J, Millward M, Gu Y, SU W, Frigault M et al. First-in-human phase I study of a selective c-Met inhibitor volitinib (HMP504/AZD6094) in patients with advanced solid tumors. J Clin Oncol 2014; 32: 11111.

    Google Scholar 

  154. Salgia R, Patel P, Bothos J, Yu W, Eppler S, Hegde P et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res 2014; 20: 1666–1675.

    CAS  PubMed  Google Scholar 

  155. Koeppen H, Yu W, Zha J, Pandita A, Penuel E, Rangell L et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib+/-onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res 2014; 20: 4488–4498.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Dieras V, Campone M, Yardley DA, Romieu G, Valero V, Isakoff SJ et al. Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. Ann Oncol 2015; 26: 1904–1910.

    CAS  PubMed  Google Scholar 

  157. Cloughesy TF, Finocchiaro G, Belda C, Recht L, Brandes AA, Pineda E et al. Onartuzumab plus bevacizumab versus placebo plus bevacizumab in recurrent glioblastoma: HGF and MGMT biomarker data. J Clin Oncol 2015; 33: 2015.

    Google Scholar 

  158. Shah MA, Cho JY, Huat ITB, Tebbutt NC, Yen CJ, Kang A et al. Randomized phase II study of FOLFOX +/− MET inhibitor, onartuzumab (O), in advanced gastroesophageal adenocarcinoma (GEC). J Clin Oncol 2015; 33: 2.

    Google Scholar 

  159. Bendell JC, Hochster HS, Hart LL, Firdaus I, Mace JR, McFarlane JJ et al. A Randomized, double-blind, phase II study of first-line FOLFOX plus bevacizumab with onartuzumab versus placebo in patients with metastatic colorectal cancer (mCRC). J Clin Oncol 2015; 33: 663.

    Google Scholar 

  160. Spigel DR, Edelman MJ, O'Byrne K, Paz-Ares L, Shames Ds, Yu W et al. Onartuzumab plus erlotinib versus erlotinib in previously treated stage lllb or IV NSCLC: Results from the pivotal phase III randomized, multicenter, placebo-controlled METlung (OAM4971g) global trial. J Clin Oncol 2014; 32: 8000.

    Google Scholar 

  161. Shah MA, Bang YJ, Lordick F, Tabernero J, Chen M, Hack SP et al. MetGastric: A phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative and MET-positive adenocarcinoma of the stomach or gastroesophageal junction. J Clin Oncol 2015; vol. 33: 4012.

    Google Scholar 

  162. Aftimos PG, Barthelemy P, Rolfo CD, Hanssens V, Jonge ND, Silence K et al. A phase I, first in human study of ARGX-111, a monoclonal antibody targeting c-MET in patients with solid tulors. J Clin Oncol 2015; 33: 2580.

    Google Scholar 

  163. Strickler JH, LoRusso P, Yen C-J, Lin C-C, Kang Y-K, Kaminker P et al. Phase I, open label, dose-escalation, and expansion study of ABT-700, an anti C-MET antibody, in patients with advanced solid tumors. J Clin Oncol 2014; 32: 2507.

    Google Scholar 

  164. Kang YK, LoRusso P, Salgia R, Yen C-J, Ramanathan RK, Kaminker P et al. Phase I study of ABT-700, an anti-c-MET antibody in patients with advanced gastric or esophageal cancer 2015 ASCO GI Meeting. J Clin Oncol 2015; 33: 167.

    Google Scholar 

  165. Tabernero J, Elez ME, Herranz M, Rico I, Prudkin L, Andreu J et al. A pharmacodynamic/pharmacokinetic study of ficlatuzumab in patients with advanced solid tumors and liver metastases. Clin Cancer Res 2014; 20: 2793–2804.

    CAS  PubMed  Google Scholar 

  166. Patnaik A, Weiss GJ, Papadopoulos KP, Hofmeister CC, Tibes R, Tolcher A et al. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer 2014; 111: 272–280.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sandy Smets for administrative support. MM is holding an ERC Starting Grant (OxyMO). VF is supported by Télévie F.R.S.-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mazzone.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finisguerra, V., Prenen, H. & Mazzone, M. Preclinical and clinical evaluation of MET functions in cancer cells and in the tumor stroma. Oncogene 35, 5457–5467 (2016). https://doi.org/10.1038/onc.2016.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.36

This article is cited by

Search

Quick links