Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FERMT1 mediates epithelial–mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity

Abstract

We previously demonstrated that fermitin family member 1 (FERMT1) was significantly overexpressed in colon cancer (CC) and associated with poor metastasis-free survival. This study aimed to investigate the precise role of FERMT1 in CC metastasis and the mechanism by which FERMT1 is involved in the epithelial–mesenchymal transition (EMT). Correlations between FERMT1 and EMT markers (E-cadherin, Slug, N-cadherin and β-catenin) were examined via immunohistochemistry in a cohort of CC tissues and adjacent normal colon mucosae. A series of in vitro and in vivo assays were performed to elucidate the function of FERMT1 in CC metastasis and underlying mechanisms. The upregulated expression of FERMT1 in CC tissues correlated positively with that of Slug, N-cadherin and β-catenin, but correlated inversely with E-cadherin expression. Altered FERMT1 expression led to marked changes in the proliferation, migration, invasion and EMT markers of CC cells both in vitro and in vivo. Investigations of underlying mechanisms found that FERMT1 interacted directly with β-catenin and activated the Wnt/β-catenin signaling pathway by decreasing the phosphorylation level of β-catenin, enhancing β-catenin nuclear translocation and increasing the transcriptional activity of β-catenin/TCF/LEF. Activation of the Wnt/β-catenin pathway by CHIR99021 reversed the effect of FERMT1 knockdown, whereas inhibition of the Wnt/β-catenin pathway by XAV939 impaired the effect of FERMT1 overexpression on EMT and cell motility. In conclusion, findings of this study suggest that FERMT1 activates the β-catenin transcriptional activity to promote EMT in CC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel R, Desantis C, Jemal A . Colorectal cancer statistics, 2014. CA Cancer J Clin 2014; 64: 104–117.

    Article  Google Scholar 

  2. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  4. Sleeman JP, Thiery JP . SnapShot: the epithelial-mesenchymal transition. Cell 2011; 145: 162.e161.

    Article  Google Scholar 

  5. Larue L, Bellacosa A . Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 2005; 24: 7443–7454.

    Article  CAS  Google Scholar 

  6. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  Google Scholar 

  7. Nawshad A, Lagamba D, Polad A, Hay ED . Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 2005; 179: 11–23.

    Article  CAS  Google Scholar 

  8. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  Google Scholar 

  9. White BD, Chien AJ, Dawson DW . Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 2012; 142: 219–232.

    Article  CAS  Google Scholar 

  10. Valenta T, Hausmann G, Basler K . The many faces and functions of beta-catenin. EMBO J 2012; 31: 2714–2736.

    Article  CAS  Google Scholar 

  11. Gonzalez DM, Medici D . Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014; 7: re8.

    Article  Google Scholar 

  12. Niehrs C . The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012; 13: 767–779.

    Article  CAS  Google Scholar 

  13. Fodde R, Brabletz T . Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19: 150–158.

    Article  CAS  Google Scholar 

  14. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008; 452: 650–653.

    Article  CAS  Google Scholar 

  15. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 2012; 149: 1245–1256.

    Article  CAS  Google Scholar 

  16. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  Google Scholar 

  17. Fan J, Yan D, Teng M, Tang H, Zhou C, Wang X et al. Digital transcript profile analysis with aRNA-LongSAGE validates FERMT1 as a potential novel prognostic marker for colon cancer. Clin Cancer Res 2011; 17: 2908–2918.

    Article  CAS  Google Scholar 

  18. Siegel DH, Ashton GH, Penagos HG, Lee JV, Feiler HS, Wilhelmsen KC et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am J Hum Genet 2003; 73: 174–187.

    Article  CAS  Google Scholar 

  19. Larjava H, Plow EF, Wu C . Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep 2008; 9: 1203–1208.

    Article  CAS  Google Scholar 

  20. Ussar S, Moser M, Widmaier M, Rognoni E, Harrer C, Genzel-Boroviczeny O et al. Loss of kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet 2008; 4: e1000289.

    Article  Google Scholar 

  21. Sin S, Bonin F, Petit V, Meseure D, Lallemand F, Bieche I et al. Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis. J Natl Cancer Inst 2011; 103: 1323–1337.

    Article  CAS  Google Scholar 

  22. Mahawithitwong P, Ohuchida K, Ikenaga N, Fujita H, Zhao M, Kozono S et al. Kindlin-1 expression is involved in migration and invasion of pancreatic cancer. Int J Oncol 2013; 42: 1360–1366.

    Article  CAS  Google Scholar 

  23. Ma HX, Shu QH, Pan JJ, Liu D, Xu GL, Li JS et al. Expression of kindlin-1 in human hepatocellular carcinoma and its prognostic significance. Tumour Biol 2015; 36: 4235–4241.

    Article  CAS  Google Scholar 

  24. Kiriyama K, Hirohashi Y, Torigoe T, Kubo T, Tamura Y, Kanaseki T et al. Expression and function of FERMT genes in colon carcinoma cells. Anticancer Res 2013; 33: 167–173.

    CAS  PubMed  Google Scholar 

  25. Willert K, Nusse R . Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 1998; 8: 95–102.

    Article  CAS  Google Scholar 

  26. Fagotto F . Looking beyond the Wnt pathway for the deep nature of beta-catenin. EMBO Rep 2013; 14: 422–433.

    Article  CAS  Google Scholar 

  27. Wu D, Pan W . GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010; 35: 161–168.

    Article  CAS  Google Scholar 

  28. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  Google Scholar 

  29. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461: 614–620.

    Article  CAS  Google Scholar 

  30. Yu H, Ye W, Wu J, Meng X, Liu RY, Ying X et al. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res 2014; 20: 3434–3445.

    Article  CAS  Google Scholar 

  31. Eccles SA, Welch DR . Metastasis: recent discoveries and novel treatment strategies. Lancet 2007; 369: 1742–1757.

    Article  CAS  Google Scholar 

  32. Gupta GP, Massague J . Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    Article  CAS  Google Scholar 

  33. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    Article  CAS  Google Scholar 

  34. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS et al. EMT is the dominant program in human colon cancer. BMC Med Genomics 2011; 4: 9.

    Article  Google Scholar 

  35. Herz C, Aumailley M, Schulte C, Schlotzer-Schrehardt U, Bruckner-Tuderman L, Has C . Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J Biol Chem 2006; 281: 36082–36090.

    Article  CAS  Google Scholar 

  36. Has C, Ludwig RJ, Herz C, Kern JS, Ussar S, Ochsendorf FR et al. C-terminally truncated kindlin-1 leads to abnormal adhesion and migration of keratinocytes. Br J Dermatol 2008; 159: 1192–1196.

    CAS  PubMed  Google Scholar 

  37. Lai-Cheong JE, Parsons M, Tanaka A, Ussar S, South AP, Gomathy S et al. Loss-of-function FERMT1 mutations in kindler syndrome implicate a role for fermitin family homolog-1 in integrin activation. Am J Pathol 2009; 175: 1431–1441.

    Article  CAS  Google Scholar 

  38. Weng W, Feng J, Qin H, Ma Y . Molecular therapy of colorectal cancer: progress and future directions. Int J Cancer 2015; 136: 493–502.

    CAS  PubMed  Google Scholar 

  39. Rognoni E, Widmaier M, Jakobson M, Ruppert R, Ussar S, Katsougkri D et al. Kindlin-1 controls Wnt and TGF-beta availability to regulate cutaneous stem cell proliferation. Nat Med 2014; 20: 350–359.

    Article  CAS  Google Scholar 

  40. Kern JS, Herz C, Haan E, Moore D, Nottelmann S, von Lilien T et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol 2007; 213: 462–470.

    Article  CAS  Google Scholar 

  41. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D . Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 2009; 9: 489–499.

    Article  CAS  Google Scholar 

  42. Yan DW, Li DW, Yang YX, Xia J, Wang XL, Zhou CZ et al. Ubiquitin D is correlated with colon cancer progression and predicts recurrence for stage II-III disease after curative surgery. Brit J Cancer 2010; 103: 961–969.

    Article  CAS  Google Scholar 

  43. Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 2004; 10: 5145–5150.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (no. 81172328) and Medical Guidance Project of Shanghai Science and Technology Commission (114119a4600) (124119a1700). We thank Jiachen Nan for her generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-W Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CC., Cai, DL., Sun, F. et al. FERMT1 mediates epithelial–mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene 36, 1779–1792 (2017). https://doi.org/10.1038/onc.2016.339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.339

This article is cited by

Search

Quick links