Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1

Abstract

Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Krantz DS, McCeney MK . Effects of psychological and social factors on organic disease: a critical assessment of research on coronary heart disease. Ann Rev Psychol 2002; 53: 341–369.

    Article  Google Scholar 

  2. Lichtman JH, Bigger Jr JT, Blumenthal JA, Frasure-Smith N, Kaufmann PG, Lesperance F et al. Depression and coronary heart disease: recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation 2008; 118: 1768–1775.

    Article  PubMed  Google Scholar 

  3. Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006; 6: 240–248.

    Article  CAS  PubMed  Google Scholar 

  4. Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A et al. Behavioral stress accelerates prostate cancer development in mice. J Clin Invest 2013; 123: 874–886.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006; 12: 939–944.

    Article  CAS  PubMed  Google Scholar 

  6. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K . Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 2011; 29: 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  7. Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL . Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 2013; 73: 250–260.

    Article  CAS  PubMed  Google Scholar 

  8. Holmes S, Griffith EJ, Musto G, Minuk GY . Antihypertensive medications and survival in patients with cancer: A population-based retrospective cohort study. Cancer Epidemiol 2013; 37: 881–885.

    Article  PubMed  Google Scholar 

  9. Wang HM, Liao ZX, Komaki R, Welsh JW, O'Reilly MS, Chang JY et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 2013; 24: 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  10. Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003; 278: 28930–28937.

    Article  CAS  PubMed  Google Scholar 

  11. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 2006; 113: 51–59.

    Article  CAS  PubMed  Google Scholar 

  12. Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006; 113: 2579–2588.

    Article  CAS  PubMed  Google Scholar 

  13. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007; 13: 324–331.

    Article  CAS  PubMed  Google Scholar 

  14. Armaiz-Pena GN, Cole SW, Lutgendorf SK, Sood AK . Neuroendocrine influences on cancer progression. Brain Behav Immun 2013; 30 (Suppl): S19–S25.

    Article  CAS  PubMed  Google Scholar 

  15. Braadland PR, Ramberg H, Grytli HH, Tasken KA . beta-Adrenergic Receptor Signaling in Prostate Cancer. Front Oncol 2014; 4: 375.

    PubMed  Google Scholar 

  16. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994; 370: 223–226.

    Article  CAS  PubMed  Google Scholar 

  17. Govindan MV . Recruitment of cAMP-response element-binding protein and histone deacetylase has opposite effects on glucocorticoid receptor gene transcription. J Biol Chem 2010; 285: 4489–4510.

    Article  CAS  PubMed  Google Scholar 

  18. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  Google Scholar 

  19. Fass DM, Butler JE, Goodman RH . Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J Biol Chem 2003; 278: 43014–43019.

    Article  CAS  PubMed  Google Scholar 

  20. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrara N . VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795–803.

    Article  CAS  Google Scholar 

  22. Wojtukiewicz MZ, Sierko E, Klement P, Rak J . The hemostatic system and angiogenesis in malignancy. Neoplasia 2001; 3: 371–384.

    Article  CAS  PubMed  Google Scholar 

  23. Lawler J . Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002; 6: 1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Byler TK, Leocadio D, Shapiro O, Bratslavsky G, Stodgell CJ, Wood RW et al. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression. BMC Urol 2012; 12: 21.

    Article  CAS  PubMed  Google Scholar 

  25. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109: 31–39.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Q, Tian Y, Liu S, Zeine R, Chlenski A, Salwen HR et al. Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 2007; 67: 1716–1724.

    Article  CAS  PubMed  Google Scholar 

  27. de Graaf C, Rognan D . Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. J Med Chem 2008; 51: 4978–4985.

    Article  CAS  PubMed  Google Scholar 

  28. Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW, Stein CM et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 2001; 345: 1030–1035.

    Article  CAS  PubMed  Google Scholar 

  29. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008; 453: 662–666.

    Article  CAS  PubMed  Google Scholar 

  30. Walchli T, Mateos JM, Weinman O, Babic D, Regli L, Hoerstrup SP et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat Protoc 2015; 10: 53–74.

    Article  CAS  PubMed  Google Scholar 

  31. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N . Angiogenesis assays: a critical overview. Clin Chem 2003; 49: 32–40.

    Article  CAS  PubMed  Google Scholar 

  32. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE . Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 2004; 85: 233–248.

    Article  CAS  PubMed  Google Scholar 

  33. Arnaoutova I, Kleinman HK . In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 2010; 5: 628–635.

    Article  CAS  Google Scholar 

  34. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015; 163: 1011–1025.

    Article  Google Scholar 

  35. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  36. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  Google Scholar 

  37. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161: 1215–1228.

    Article  CAS  PubMed  Google Scholar 

  38. Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 2006; 13: 151–167.

    Article  CAS  PubMed  Google Scholar 

  39. Du K, Asahara H, Jhala US, Wagner BL, Montminy M . Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol Cell Biol 2000; 20: 4320–4327.

    Article  CAS  PubMed  Google Scholar 

  40. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  Google Scholar 

  41. Manna PP, Frazier WA . The mechanism of CD47-dependent killing of T cells: heterotrimeric Gi-dependent inhibition of protein kinase A. J Immunol 2003; 170: 3544–3553.

    Article  CAS  PubMed  Google Scholar 

  42. Manna PP, Frazier WA . CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 2004; 64: 1026–1036.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts W, Magwenzi S, Aburima A, Naseem KM . Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood 2010; 116: 4297–4306.

    Article  CAS  PubMed  Google Scholar 

  44. Wagner JM, Hackanson B, Lubbert M, Jung M . Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 2010; 1: 117–136.

    Article  CAS  PubMed  Google Scholar 

  45. West AC, Johnstone RW . New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014; 124: 30–39.

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M et al. GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci USA 2014; 111: 1521–1526.

    Article  CAS  PubMed  Google Scholar 

  47. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996; 2: 1627–1636.

    CAS  Google Scholar 

  48. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Liu C, Amato RJ, Chang JT, Du G, Li W . CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget 2014; 5: 10840–10853.

    PubMed Central  PubMed  Google Scholar 

  50. Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, Zhang Y et al. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget 2016, e-pub ahead of print 14 May 2016; doi: 10.18632/oncotarget.9359.

Download references

Acknowledgements

We are grateful to Dr Rebecca Berdeaux for providing us the CREB cDNA constructs. We are thankful to Drs Isaiah Fidler and Vihang Narkar for providing us PC3 and SVEC4-10 cells, respectively. We also would like to thank Dr Kendra Carmon for critical reading of this paper. This work was supported by a Rising STARS Award from University of Texas System (W Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulsurkar, M., Li, Z., Zhang, Y. et al. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 36, 1525–1536 (2017). https://doi.org/10.1038/onc.2016.319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.319

This article is cited by

Search

Quick links