Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer

Abstract

Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour-suppressor genes. The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the mediation of gene silencing through interaction with histone deacetylases and histone methyltransferases. However, the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in reshaping the DNA methylation landscape at this locus and genome-wide. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2−/− mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2−/− cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer samples, highlighting a potential active role of MBD2 in promoting cancer-specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 shows that MBD2 associates with DNA methyltransferase enzymes 1 and 3A. Together our results demonstrate that MBD2 has a critical role in ‘rewriting’ the cancer methylome at specific regulatory regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mohandas T, Sparkes RS, Shapiro LJ . Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 1981; 211: 393–396.

    Article  CAS  PubMed  Google Scholar 

  2. Gartler SM, Riggs AD . Mammalian X-chromosome inactivation. Annu Rev Genet 1983; 17: 155–190.

    Article  CAS  PubMed  Google Scholar 

  3. Baylin SB, Jones PA . A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011; 11: 726–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bestor TH . Cloning of a mammalian DNA methyltransferase. Gene 1988; 74: 9–12.

    Article  CAS  PubMed  Google Scholar 

  5. Stirzaker C, Taberlay PC, Statham AL, Clark SJ . Mining cancer methylomes: prospects and challenges. Trends Genet 2014; 30: 75–84.

    Article  CAS  PubMed  Google Scholar 

  6. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41: 1350–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41: 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 2013; 23: 9–22.

    Article  CAS  PubMed  Google Scholar 

  9. Hendrich B, Bird A . Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 1998; 18: 6538–6547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klose RJ, Bird AP, Genomic DNA . methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999; 13: 1924–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saito M, Ishikawa F . The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem 2002; 277: 35434–35439.

    Article  CAS  PubMed  Google Scholar 

  13. Du Q, Luu PL, Stirzaker C, Clark SJ . Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7: 1051–1073.

    Article  CAS  PubMed  Google Scholar 

  14. Boeke J, Ammerpohl O, Kegel S, Moehren U, Renkawitz R . The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J Biol Chem 2000; 275: 34963–34967.

    Article  CAS  PubMed  Google Scholar 

  15. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP . Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 1999; 23: 62–66.

    Article  CAS  PubMed  Google Scholar 

  16. Ng HH, Jeppesen P, Bird A . Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 2000; 20: 1394–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barr H, Hermann A, Berger J, Tsai HH, Adie K, Prokhortchouk A et al. Mbd2 contributes to DNA methylation-directed repression of the Xist gene. Mol Cell Biol 2007; 27: 3750–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stirzaker C, Song JZ, Davidson B, Clark SJ . Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 2004; 64: 3871–3877.

    Article  CAS  PubMed  Google Scholar 

  19. Pulukuri SM, Rao JS . CpG island promoter methylation and silencing of 14-3-3sigma gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2. Oncogene 2006; 25: 4559–4572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chatagnon A, Bougel S, Perriaud L, Lachuer J, Benhattar J, Dante R . Specific association between the methyl-CpG-binding domain protein 2 and the hypermethylated region of the human telomerase reverse transcriptase promoter in cancer cells. Carcinogenesis 2009; 30: 28–34.

    Article  CAS  PubMed  Google Scholar 

  21. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ . Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 1999; 18: 1313–1324.

    Article  CAS  PubMed  Google Scholar 

  22. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ . Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 2002; 21: 1048–1061.

    Article  CAS  PubMed  Google Scholar 

  23. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A . Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 2001; 15: 710–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai Y, Geutjes EJ, de Lint K, Roepman P, Bruurs L, Yu LR et al. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene 2014; 33: 2157–2168.

    Article  CAS  PubMed  Google Scholar 

  25. Ernst J, Kellis M . ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012; 9: 215–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baubec T, Ivanek R, Lienert F, Schubeler D . Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 2013; 153: 480–492.

    Article  CAS  PubMed  Google Scholar 

  27. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23: 58–61.

    Article  CAS  PubMed  Google Scholar 

  28. Stefanska B, Huang J, Bhattacharyya B, Suderman M, Hallett M, Han ZG et al. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 2011; 71: 5891–5903.

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Liu Y, Han R, Beier UH, Thomas RM, Wells AD et al. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function. Mol Cell Biol 2013; 33: 4106–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menafra R, Brinkman AB, Matarese F, Franci G, Bartels SJ, Nguyen L et al. Genome-wide binding of MBD2 reveals strong preference for highly methylated loci. PLoS One 2014; 9: e99603.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gunther K, Rust M, Leers J, Boettger T, Scharfe M, Jarek M et al. Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. Nucleic Acids Res 2013; 41: 3010–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chatagnon A, Perriaud L, Nazaret N, Croze S, Benhattar J, Lachuer J et al. Preferential binding of the methyl-CpG binding domain protein 2 at methylated transcriptional start site regions. Epigenetics 2011; 6: 1295–1307.

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Serra L, Ballestar E, Ropero S, Setien F, Billard LM, Fraga MF et al. Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins. Oncogene 2008; 27: 3556–3566.

    Article  CAS  PubMed  Google Scholar 

  34. Mian OY, Wang SZ, Zhu SZ, Gnanapragasam MN, Graham L, Bear HD et al. Methyl-binding domain protein 2-dependent proliferation and survival of breast cancer cells. Mol Cancer Res 2011; 9: 1152–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baubec T, Schubeler D . Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Devel 2014; 25: 85–92.

    Article  CAS  Google Scholar 

  36. Auriol E, Billard LM, Magdinier F, Dante R . Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus. Nucleic Acids Res 2005; 33: 4243–4254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chatagnon A, Ballestar E, Esteller M, Dante R . A role for methyl-CpG binding domain protein 2 in the modulation of the estrogen response of pS2/TFF1 gene. PLoS One 2010; 5: e9665.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M . A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 2006; 66: 8342–8346.

    Article  CAS  PubMed  Google Scholar 

  39. Ballestar E, Esteller M . Methyl-CpG-binding proteins in cancer: blaming the DNA methylation messenger. Biochem Cell Biol 2005; 83: 374–384.

    Article  CAS  PubMed  Google Scholar 

  40. Berger J, Bird A . Role of MBD2 in gene regulation and tumorigenesis. Biochem Soc Trans 2005; 33: 1537–1540.

    Article  CAS  PubMed  Google Scholar 

  41. Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M . The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 2003; 31: 1765–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magdinier F, Wolffe AP . Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 2001; 98: 4990–4995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR . Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 2003; 34: 145–147.

    Article  CAS  PubMed  Google Scholar 

  44. Kalyuga M, Gallego-Ortega D, Lee HJ, Roden DL, Cowley MJ, Caldon CE et al. ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol 2012; 10: e1001461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 2013; 3: 342–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohammed H, Taylor C, Brown GD, Papachristou EK, Carroll JS, D'Santos CS . Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 2016; 11: 316–326.

    Article  CAS  PubMed  Google Scholar 

  47. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM et al. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98: 288–295.

    Article  CAS  PubMed  Google Scholar 

  49. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 2010; 11: 587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473: 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015; 163: 1011–1025.

    Article  Google Scholar 

  53. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010; 28: 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  55. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 2009; 4: 44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brigid O’Gorman for preparation of figures and reviewing the manuscript. Mouse fibroblast Mbd2−/− and wild-type cells were gratefully received as a gift from Adrian Bird. The results published here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. We thank the Ramaciotti Centre, University of New South Wales (Sydney, Australia) for conducting the Affymetrix array experiments and the Australian Genome Research Facility for the HM450K arrays. This work is supported by National Health and Medical Research Council project grants (1029584 and 1088144) and NHMRC Fellowship to SJC (1063559) The contents of the published material are solely the responsibility of the administering institution and individual authors and do not reflect the views of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Clark.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stirzaker, C., Song, J., Ng, W. et al. Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene 36, 1328–1338 (2017). https://doi.org/10.1038/onc.2016.297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.297

This article is cited by

Search

Quick links