Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression

Subjects

Abstract

The heterogeneous breast cancers can be classified into different subtypes according to their histopathological characteristics and molecular signatures. Foxa1 expression is linked with luminal breast cancer (LBC) with good prognosis, whereas Twist1 expression is associated with basal-like breast cancer (BLBC) with poor prognosis owing to its role in promoting epithelial-to-mesenchymal transition (EMT), invasiveness and metastasis. However, the regulatory and functional relationships between Twist1 and Foxa1 in breast cancer progression are unknown. In this study, we demonstrate that in the estrogen receptor (ERα)-positive LBC cells Twist1 silences Foxa1 expression, which has an essential role in relieving Foxa1-arrested migration, invasion and metastasis of breast cancer cells. Mechanistically, Twist1 binds to Foxa1 proximal promoter and recruits the NuRD transcriptional repressor complex to de-acetylate H3K9 and repress RNA polymerase II recruitment. Twist1 also silences Foxa1 promoter by inhibiting AP-1 recruitment. Twist1 expression in MCF7 cells silenced Foxa1 expression, which was concurrent with the induction of EMT, migration, invasion and metastasis of these cells. Importantly, restored Foxa1 expression in these cells largely inhibited Twist1-promoted migration, invasion and metastasis. Restored Foxa1 expression did not change the Twist1-induced mesenchymal cellular morphology and the expression of Twist1-regulated E-cadherin, β-catenin, vimentin and Slug, but it partially rescued Twist1-silenced ERα and cytokeratin 8 expression and reduced Twist1-induced integrin α5, integrin β1 and MMP9 expression. In a xenografted mouse model, restored Foxa1 also increased Twist1-repressed LBC markers and decreased Twist1-induced BLBC markers. Furthermore, Twist1 expression is negatively correlated with Foxa1 in the human breast tumors. The tumors with high Twist1 and low Foxa1 expressions are associated with poor distant metastasis-free survival. These results demonstrate that Twist1’s silencing effect on Foxa1 expression is largely responsible for Twist1-induced migration, invasion and metastasis, but less responsible for Twist1-induced mesenchymal morphogenesis and expression of certain EMT markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    CAS  PubMed  Google Scholar 

  2. Brenton JD, Carey LA, Ahmed AA, Caldas C . Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 2005; 23: 7350–7360.

    Article  CAS  PubMed  Google Scholar 

  3. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11: 5678–5685.

    Article  CAS  PubMed  Google Scholar 

  4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006; 355: 560–569.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 2006; 59: 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  9. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K et al. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10: R53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen ZF, Behringer RR . twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 1995; 9: 686–699.

    Article  CAS  PubMed  Google Scholar 

  11. Qin Q, Xu Y, He T, Qin C, Xu J . Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2012; 22: 90–106.

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  13. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu J, Qin L, He T, Qin J, Hong J, Wong J et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res 2010; 21: 275–289.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH . Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67: 1979–1987.

    Article  CAS  PubMed  Google Scholar 

  16. Fu J, Zhang L, He T, Xiao X, Liu X, Wang L et al. TWIST represses estrogen receptor-alpha expression by recruiting the NuRD protein complex in breast cancer cells. Int J Biol Sci 2012; 8: 522–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P et al. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene 2012; 31: 3223–3234.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng GZ, Zhang W, Wang LH . Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 2008; 68: 957–960.

    Article  CAS  PubMed  Google Scholar 

  19. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  PubMed  Google Scholar 

  20. Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 2014; 25: 210–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011; 19: 372–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen HF, Huang CH, Liu CJ, Hung JJ, Hsu CC, Teng SC et al. Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 2014; 5: 4697.

    Article  CAS  PubMed  Google Scholar 

  23. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14: 79–89.

    Article  CAS  PubMed  Google Scholar 

  24. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005; 122: 33–43.

    Article  CAS  PubMed  Google Scholar 

  25. Laganiere J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguere V . From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 2005; 102: 11651–11656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD et al. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development 2010; 137: 2045–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS . FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 2011; 43: 27–33.

    Article  CAS  PubMed  Google Scholar 

  28. Naderi A, Meyer M, Dowhan DH . Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia 2012; 14: 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carroll JS, Brown M . Estrogen receptor target gene: an evolving concept. Mol Endocrinol 2006; 20: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  30. Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM et al. FOXA1 expression in breast cancer–correlation with luminal subtype A and survival. Clin Cancer Res 2007; 13: 4415–4421.

    Article  CAS  PubMed  Google Scholar 

  31. Thorat MA, Marchio C, Morimiya A, Savage K, Nakshatri H, Reis-Filho JS et al. Forkhead box A1 expression in breast cancer is associated with luminal subtype and good prognosis. J Clin Pathol 2008; 61: 327–332.

    Article  CAS  PubMed  Google Scholar 

  32. Bernardo GM, Bebek G, Ginther CL, Sizemore ST, Lozada KL, Miedler JD et al. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene 2013; 32: 554–563.

    Article  CAS  PubMed  Google Scholar 

  33. McCune K, Mehta R, Thorat MA, Badve S, Nakshatri H . Loss of ERalpha and FOXA1 expression in a progression model of luminal type breast cancer: insights from PyMT transgenic mouse model. Oncol Rep 2010; 24: 1233–1239.

    PubMed  Google Scholar 

  34. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009; 4: e6146.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  36. Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D et al. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-beta signaling axes. Cancer Discov 2012; 2: 248–259.

    Article  CAS  PubMed  Google Scholar 

  37. Yang F, Sun L, Li Q, Han X, Lei L, Zhang H et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 2012; 31: 110–123.

    Article  CAS  PubMed  Google Scholar 

  38. Qin L, Wu YL, Toneff MJ, Li D, Liao L, Gao X et al. NCOA1 directly targets M-CSF1 expression to promote breast cancer metastasis. Cancer Res 2014; 74: 3477–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  40. Song Y, Washington MK, Crawford HC . Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 2010; 70: 2115–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H et al. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol 2008; 28: 5937–5950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res 2008; 68: 2329–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET et al. Integrin alpha2beta 1 (alpha2beta1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 2013; 30: 569–578.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta SK, Oommen S, Aubry MC, Williams BP, Vlahakis NE . Integrin alpha9beta1 promotes malignant tumor growth and metastasis by potentiating epithelial-mesenchymal transition. Oncogene 2013; 32: 141–150.

    Article  CAS  PubMed  Google Scholar 

  46. Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E . Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 2011; 30: 1566–1576.

    Article  CAS  PubMed  Google Scholar 

  47. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S et al. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 2011; 71: 1989–1998.

    Article  CAS  PubMed  Google Scholar 

  48. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 2008; 10: 295–305.

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y, Liao L, Zhou N, Theissen SM, Liao XH, Nguyen H et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol 2013; 183: 1281–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tien JC, Liao L, Liu Y, Liu Z, Lee DK, Wang F et al. The steroid receptor coactivator-3 is required for developing neuroendocrine tumor in the mouse prostate. Int J Biol Sci 2014; 10: 1116–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee DK, Liu Y, Liao L, Wang F, Xu J . The prostate basal cell (BC) heterogeneity and the p63-positive BC differentiation spectrum in mice. Int J Biol Sci 2014; 10: 1007–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Longo PA, Kavran JM, Kim MS, Leahy DJ . Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 2013; 529: 227–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qin L, Liu Z, Chen H, Xu J . The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 2009; 69: 3819–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuang SQ, Liao L, Zhang H, Lee AV, O'Malley BW, Xu J . AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res 2004; 64: 1875–1885.

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O'Malley BW et al. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci USA 2009; 106: 151–156.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yuqing Xiong for assisting with manuscript preparation and the Genetically Engineered Mouse Core (GEMC) partially supported by the National Institutes of Health (NIH) grant P30CA125123 at Baylor College of Medicine for assisting with mouse models. This study is supported by NIH grants CA112403 and CA193455 and Cancer Prevention and Research Institute of Texas grants RP120732-P5 and RP150197. This study is also partially supported by National Natural Science Foundation of China grants 81572619 and Sichuan Education Department research grant 15TD0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qin, L., Sun, T. et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 36, 1157–1166 (2017). https://doi.org/10.1038/onc.2016.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.286

This article is cited by

Search

Quick links