Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition

Abstract

Epithelial cells acquire migratory/invasive and stemness traits upon conversion to the mesenchymal phenotype. The expression of E-cadherin is a key to this transition; yet precise understanding of the pathways involved in integrating E-cadherin loss to the gain of mesenchymal traits remains poorly understood. Here, we show that phosphoinositide-generating enzyme, PIPKIγ, expression is upregulated upon epithelial–mesenchymal transition (EMT) and together with the cytoskeletal protein talin assemble into a signaling complex upon E-cadherin loss. PIPKIγ and talin together control the adhesion and phosphoinositide signaling that regulates conversion to the mesenchymal phenotypes. PIPKIγ and talin regulate the stability of E-cadherin transcriptional repressors, snail and slug, induced by transforming growth factor-β1 or extracellular matrix protein. Loss of PIPKIγ or talin or their interaction impaired EMT and the acquisition of cell motility and stemness. This demonstrates a mechanism where a phosphoinositide-generating enzyme PIPKIγ couples with a cytoskeletal protein talin to control the acquisition of mesenchymal phenotypes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Davis FM, Stewart TA, Thompson EW, Monteith GR . Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 2014; 35: 479–488.

    Article  CAS  PubMed  Google Scholar 

  2. Jung HY, Fattet L, Yang J . Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 2015; 21: 962–968.

    Article  CAS  PubMed  Google Scholar 

  3. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  4. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  6. Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ et al. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 2007; 42: 15–39.

    Article  CAS  PubMed  Google Scholar 

  7. Thapa N, Anderson RA . PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells. Cell Adh Migr 2012; 6: 409–412.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi S, Thapa N, Tan X, Hedman AC, Anderson RA . PIP kinases define PI4,5P signaling specificity by association with effectors. Biochim Biophys Acta 2015; 1851: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Thapa N, Hedman AC, Anderson RA . Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013; 35: 513–522.

    Article  CAS  PubMed  Google Scholar 

  10. Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA . Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J Cell Biol 2007; 176: 343–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schill NJ, Hedman AC, Choi S, Anderson RA . Isoform 5 of PIPKIgamma regulates the endosomal trafficking and degradation of E-cadherin. J Cell Sci 2014; 127: 2189–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiong X, Xu Q, Huang Y, Singh RD, Anderson R, Leof E et al. An association between type Igamma PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization. Mol Biol Cell 2012; 23: 87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Turbin DA, Ling K, Thapa N, Leung S, Huntsman DG et al. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res 2010; 12: R6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi S, Thapa N, Hedman AC, Li Z, Sacks DB, Anderson RA . IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration. EMBO J 2013; 32: 2617–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Ling K, Wagoner MP, Anderson RA . Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J Cell Biol 2007; 178: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thapa N, Sun Y, Schramp M, Choi S, Ling K, Anderson RA . Phosphoinositide signaling regulates the exocyst complex and polarized integrin trafficking in directionally migrating cells. Dev Cell 2012; 22: 116–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thapa N, Choi S, Hedman A, Tan X, Anderson RA . Phosphatidylinositol phosphate 5-kinase Igammai2 in association with Src controls anchorage-independent growth of tumor cells. J Biol Chem 2013; 288: 34707–34718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thapa N, Choi S, Tan X, Wise T, Anderson RA . Phosphatidylinositol phosphate 5-kinase Igamma and PI3K/Akt signaling couple to promote oncogenic growth. J Biol Chem 2015; 290: 18843–18854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA . Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420: 89–93.

    Article  CAS  PubMed  Google Scholar 

  20. Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF, Mosher DF et al. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J Cell Biol 2003; 163: 1339–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calderwood DA, Campbell ID, Critchley DR . Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14: 503–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL . Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275: 36803–36810.

    Article  CAS  PubMed  Google Scholar 

  23. Derynck R, Muthusamy BP, Saeteurn KY . Signaling pathway cooperation in TGF-beta-induced epithelial-mesenchymal transition. Curr Opin Cell Biol 2014; 31: 56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park J, Schwarzbauer JE . Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition. Oncogene 2014; 33: 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  25. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR . Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 2008; 180: 1277–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ben-Aissa K, Patino-Lopez G, Belkina NV, Maniti O, Rosales T, Hao JJ et al. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker. J Biol Chem 2012; 287: 16311–16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  28. Nieves B, Jones CW, Ward R, Ohta Y, Reverte CG, LaFlamme SE . The NPIY motif in the integrin beta1 tail dictates the requirement for talin-1 in outside-in signaling. J Cell Sci 2010; 123: 1216–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519: 425–430.

    Article  CAS  PubMed  Google Scholar 

  30. Saltel F, Mortier E, Hytonen VP, Jacquier MC, Zimmermann P, Vogel V et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J Cell Biol 2009; 187: 715–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Medici D, Hay ED, Olsen BR . Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 2008; 19: 4875–4887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT et al. GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 2014; 33: 3172–3182.

    Article  CAS  PubMed  Google Scholar 

  34. Brabletz T . To differentiate or not—routes towards metastasis. Nat Rev Cancer 2012; 12: 425–436.

    Article  CAS  PubMed  Google Scholar 

  35. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    Article  CAS  PubMed  Google Scholar 

  36. Chen YS, Mathias RA, Mathivanan S, Kapp EA, Moritz RL, Zhu HJ et al. Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition. Mol Cell Proteomics 2011; 10: M110 001131.

    Article  PubMed  Google Scholar 

  37. Granato DC, Zanetti MR, Kawahara R, Yokoo S, Domingues RR, Aragao AZ et al. Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model. PLoS One 2014; 9: e98208.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA . Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  40. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011; 481: 85–89.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health (NIH) grants (CA104708 and GM057549) to RAA; American Heart Association (AHA) grants to NT (10POST4290052) and SC (13PRE14690057); and Howard Hughes Medical Institute (HHMI) International Student Research Fellowship to XT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, N., Tan, X., Choi, S. et al. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 36, 899–911 (2017). https://doi.org/10.1038/onc.2016.267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.267

This article is cited by

Search

Quick links