Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer

Abstract

Papillary thyroid carcinoma (PTC), the most frequent thyroid cancer, is characterized by low proliferation but no apoptosis, presenting frequent lymph-node metastasis. Papillary thyroid carcinoma overexpress transforming growth factor-beta (TGF-β). In human cells, TGF-β has two opposing actions: antitumoral through pro-apoptotic and cytostatic activities, and pro-tumoral promoting growth and metastasis. The switch converting TGF-β from a tumor-suppressor to tumor-promoter has not been identified. In the current study, we have quantified a parallel upregulation of TGF-β and nuclear p27, a CDK2 inhibitor, in samples from PTC. We established primary cultures from follicular epithelium in human homeostatic conditions (h7H medium). TGF-β-dependent cytostasis occurred in normal and cancer cells through p15/CDKN2B induction. However, TGF-β induced apoptosis in normal and benign but not in carcinoma cultures. In normal thyroid cells, TGF-β/SMAD repressed the p27/CDKN1B gene, activating CDK2-dependent SMAD3 phosphorylation to induce p50 NFκB-dependent BAX upregulation and apoptosis. In thyroid cancer cells, oncogene activation prevented TGF-β/SMAD-dependent p27 repression, and CDK2/SMAD3 phosphorylation, leading to p65 NFκB upregulation which repressed BAX, induced cyclin D1 and promoted TGF-β-dependent growth. In PTC samples from patients, upregulation of TGF-β, p27, p65 and cyclin D1 mRNA were significantly correlated, while the expression of the isoform BAX-β, exclusively transcribed in apoptotic cells, was negatively correlated. Additionally, combined ERK and p65 NFκB inhibitors reduced p27 expression and potentiated apoptosis in thyroid cancer cells while not affecting survival in normal thyroid cells. Our results therefore suggest that the oncoprotein p27 reorganizes the effects of TGF-β in thyroid cancer, explaining the slow proliferation but lack of apoptosis and metastatic behavior of PTC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Edwards BK, Noone AM, Mariotto AB, Simard EP, Boscoe FP, Henley SJ et al. Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 2014; 120: 1290–1314.

    Article  PubMed  Google Scholar 

  2. DeLellis RA, Lloyd RV, Heitz PU, Eng CE . World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. IARC Press: Lyon, 2004.

    Google Scholar 

  3. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 2009; 69: 8317–8325.

    Article  CAS  PubMed  Google Scholar 

  4. Bravo SB, Pampin S, Cameselle-Teijeiro J, Carneiro C, Dominguez F, Barreiro F et al. TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation. Oncogene 2003; 22: 7819–7830.

    Article  CAS  PubMed  Google Scholar 

  5. Carneiro C, Alvarez CV, Zalvide J, Vidal A, Dominguez F . TGF-beta1 actions on FRTL-5 cells provide a model for the physiological regulation of thyroid growth. Oncogene 1998; 16: 1455–1465.

    Article  CAS  PubMed  Google Scholar 

  6. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J . TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3: 400–408.

    Article  CAS  PubMed  Google Scholar 

  7. Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J . C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 2006; 10: 203–214.

    Article  CAS  PubMed  Google Scholar 

  8. Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A et al. A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 2006; 103: 12747–12752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ikushima H, Miyazono K . TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  PubMed  Google Scholar 

  10. Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC et al. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 1997; 99: 2365–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH . TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 2002; 4: 51–58.

    Article  CAS  PubMed  Google Scholar 

  12. Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA . TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001; 3: 708–714.

    Article  CAS  PubMed  Google Scholar 

  13. Ramesh S, Qi XJ, Wildey GM, Robinson J, Molkentin J, Letterio J et al. TGF beta-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO Rep 2008; 9: 990–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE . TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008; 31: 918–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008; 10: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ et al. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 2008; 68: 3152–3160.

    Article  CAS  PubMed  Google Scholar 

  17. Massague J . TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012; 13: 616–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heldin CH, Vanlandewijck M, Moustakas A . Regulation of EMT by TGFbeta in cancer. FEBS Lett 2012; 586: 1959–1970.

    Article  CAS  PubMed  Google Scholar 

  19. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reynisdottir I, Massague J . The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 1997; 11: 492–503.

    Article  CAS  PubMed  Google Scholar 

  22. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al. COSMIC (Catalogue Of Somatic Mutations In Cancer): exploring the world's knowledge of somatic mutations in human cancer. Nucl Acids Res 2015; 43: D805–D811. Available at http://cancer.sanger.ac.uk/cosmic.

    Article  CAS  PubMed  Google Scholar 

  23. Jain MV, Jangamreddy JR, Grabarek J, Schweizer F, Klonisch T, Cieslar-Pobuda A et al. Nuclear localized Akt enhances breast cancer stem-like cells through counter-regulation of p21(Waf1/Cip1) and p27(kip1). Cell Cycle 2015; 14: 2109–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  25. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8: 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  26. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  27. Ciarallo S, Subramaniam V, Hung W, Lee JH, Kotchetkov R, Sandhu C et al. Altered p27(Kip1) phosphorylation, localization, and function in human epithelial cells resistant to transforming growth factor beta-mediated G(1) arrest. Mol Cell Biol 2002; 22: 2993–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene 2015; 34: 5447–5459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Marco C, Malanga D, Rinaldo N, De Vita F, Scrima M, Lovisa S et al. Mutant AKT1-E17K is oncogenic in lung epithelial cells. Oncotarget 2015; 6: 39634–39650.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21: 1731–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Motti ML, De Marco C, Califano D, De Gisi S, Malanga D, Troncone G et al. Loss of p27 expression through RAS—>BRAF—>MAP kinase-dependent pathway in human thyroid carcinomas. Cell Cycle 2007; 6: 2817–2825.

    Article  CAS  PubMed  Google Scholar 

  32. Motti ML, Califano D, Troncone G, De Marco C, Migliaccio I, Palmieri E et al. Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. Am J Pathol 2005; 166: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng Y, Lu J, Chen G, Ardekani GS, Rotte A, Martinka M et al. Stage-specific prognostic biomarkers in melanoma. Oncotarget 2015; 6: 4180–4189.

    PubMed  PubMed Central  Google Scholar 

  34. Al-Maghrabi J, Al-Ahwal M, Buhmeida A, Syrjanen K, Sibyani A, Emam E et al. Expression of cell cycle regulators p21 and p27 as predictors of disease outcome in colorectal carcinoma. J Gastrointest Cancer 2012; 43: 279–287.

    Article  CAS  PubMed  Google Scholar 

  35. Bravo SB, Garcia-Rendueles ME, Garcia-Rendueles AR, Rodrigues JS, Perez-Romero S, Garcia-Lavandeira M et al. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer. J Clin Endocrinol Metab 2013; 98: 2431–2441.

    Article  CAS  PubMed  Google Scholar 

  36. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C et al. Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 1997; 3: 227–230.

    Article  CAS  PubMed  Google Scholar 

  37. Lloyd RV, Ferreiro JA, Jin L, Sebo TJ . TGFB, TGFB receptors, Ki-67, and p27(Kip)l expression in papillary thyroid carcinomas. Endocr Pathol 1997; 8: 293–300.

    Article  PubMed  Google Scholar 

  38. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  39. Darzynkiewicz Z, Zhao H, Zhang S, Lee MY, Lee EY, Zhang Z . Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase delta revealed in individual cells by cytometry. Oncotarget 2015; 6: 11735–11750.

    PubMed  PubMed Central  Google Scholar 

  40. Macias MJ, Martin-Malpartida P, Massague J . Structural determinants of Smad function in TGF-beta signaling. Trends Biochem Sci 2015; 40: 296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chassot AA, Turchi L, Virolle T, Fitsialos G, Batoz M, Deckert M et al. Id3 is a novel regulator of p27kip1 mRNA in early G1 phase and is required for cell-cycle progression. Oncogene 2007; 26: 5772–5783.

    Article  CAS  PubMed  Google Scholar 

  42. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 2005; 25: 4262–4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z et al. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 2001; 20: 1688–1702.

    Article  CAS  PubMed  Google Scholar 

  44. Vidal A, Millard SS, Miller JP, Koff A . Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem 2002; 277: 16433–16440.

    Article  CAS  PubMed  Google Scholar 

  45. Coleman J, Hawkinson M, Miskimins R, Miskimins WK . The major transcription initiation site of the p27Kip1 gene is conserved in human and mouse and produces a long 5'-UTR. BMC. Mol Biol 2001; 2: 12.

    CAS  Google Scholar 

  46. Qin H, Chan MW, Liyanarachchi S, Balch C, Potter D, Souriraj IJ et al. An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules. BMC. Syst Biol 2009; 3: 73.

    Google Scholar 

  47. Seoane J . p21(WAF1/CIP1) at the switch between the anti-oncogenic and oncogenic faces of TGFbeta. Cancer Biol Ther 2004; 3: 226–227.

    Article  CAS  PubMed  Google Scholar 

  48. Wang G, Long J, Matsuura I, He D, Liu F . The Smad3 linker region contains a transcriptional activation domain. Biochem J 2005; 386: 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K . The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol 2001; 8: 248–253.

    Article  CAS  PubMed  Google Scholar 

  50. Matsuura I, Wang G, He D, Liu F . Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 2005; 44: 12546–12553.

    Article  CAS  PubMed  Google Scholar 

  51. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F . Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004; 430: 226–231.

    Article  CAS  PubMed  Google Scholar 

  52. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009; 139: 757–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang G, Matsuura I, He D, Liu F . Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem 2009; 284: 9663–9673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  55. Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X et al. TGF-beta and NF-kappaB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene 2013; 32: 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  56. Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ . TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 2008; 314: 2725–2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 2004; 114: 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang YE . Non-Smad pathways in TGF-beta signaling. Cell Res 2009; 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

  59. Solt LA, May MJ . The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 2008; 42: 3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grimm T, Schneider S, Naschberger E, Huber J, Guenzi E, Kieser A et al. EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood 2005; 105: 3263–3269.

    Article  CAS  PubMed  Google Scholar 

  61. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  62. Cianfrocca R, Muscolini M, Marzano V, Annibaldi A, Marinari B, Levrero M et al. RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ 2008; 15: 354–363.

    Article  CAS  PubMed  Google Scholar 

  63. Witzel II, Koh LF, Perkins ND . Regulation of cyclin D1 gene expression. Biochem Soc Trans 2010; 38: 217–222.

    Article  CAS  PubMed  Google Scholar 

  64. James MK, Ray A, Leznova D, Blain SW . Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 2008; 28: 498–510.

    CAS  PubMed  Google Scholar 

  65. Philipp-Staheli J, Payne SR, Kemp CJ . p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 2001; 264: 148–168.

    Article  CAS  PubMed  Google Scholar 

  66. Fu NY, Sukumaran SK, Kerk SY, Yu VC . Baxbeta: a constitutively active human Bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell 2009; 33: 15–29.

    Article  CAS  PubMed  Google Scholar 

  67. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159: 676–690.

    Article  Google Scholar 

  68. Adjei A, Zhao Y . Exploring the pathway: inhibiting MEK for cancer therapy. ASCO Updates 21 May 2015.

  69. Poon RY, Toyoshima H, Hunter T . Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 1995; 6: 1197–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Darzynkiewicz Z, Sharpless T, Staiano-Coico L, Melamed MR . Subcompartments of the G1 phase of cell cycle detected by flow cytometry. Proc Natl Acad Sci USA 1980; 77: 6696–6699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H . Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–1715.

    CAS  PubMed  Google Scholar 

  72. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G . Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812–821.

    Article  CAS  PubMed  Google Scholar 

  73. Foster DA, Yellen P, Xu L, Saqcena M . Regulation of G1 Cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 2010; 1: 1124–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hakem A, Sasaki T, Kozieradzki I, Penninger JM . The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis. J Exp Med 1999; 189: 957–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ . Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27(Kip1). J Clin Invest 1999; 103: 597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang J, Walsh K . Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 1996; 273: 359–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park DS, Levine B, Ferrari G, Greene LA . Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 1997; 17: 8975–8983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell 1998; 1: 553–563.

    Article  CAS  PubMed  Google Scholar 

  79. Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV . Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci USA 1994; 91: 6875–6879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maddika S, Panigrahi S, Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K et al. Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol 2009; 29: 1235–1248.

    Article  CAS  PubMed  Google Scholar 

  81. Landa I, Montero-Conde C, Malanga D, De Gisi S, Pita G, Leandro-Garcia LJ et al. Allelic variant at -79 (C>T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocr Relat Cancer 2010; 17: 317–328.

    Article  CAS  PubMed  Google Scholar 

  82. Pacifico F, Mauro C, Barone C, Crescenzi E, Mellone S, Monaco M et al. Oncogenic and anti-apoptotic activity of NF-kappa B in human thyroid carcinomas. J Biol Chem 2004; 279: 54610–54619.

    Article  CAS  PubMed  Google Scholar 

  83. Palona I, Namba H, Mitsutake N, Starenki D, Podtcheko A, Sedliarou I et al. BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology 2006; 147: 5699–5707.

    Article  CAS  PubMed  Google Scholar 

  84. Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C et al. The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci USA 2008; 105: 14058–14063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ana Senra (CIMUS; Spain); Jun Ninomiya-Tsuji, Kuni Matsumoto (Japan), Donald Kufe (Boston), Pura Muñoz-Canoves (Barcelona), Celia Pombo and Juan Zalvide (Spain) for technical help, plasmids or materials, and Carlos Dieguez for helpful discussions. The manuscript was edited for English language by Pamela Lear (Oxford University). This project has been supported by grants from the MINECO-FEDER BFU2013-46109-R and Xunta de Galicia R2014/050 to CVA and 09CSA020208PR to SBB; and ISCIII-FEDER PI12/00749 to JC-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C V Alvarez.

Ethics declarations

Competing interests

The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript. The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Rendueles, A., Rodrigues, J., Garcia-Rendueles, M. et al. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 36, 652–666 (2017). https://doi.org/10.1038/onc.2016.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.233

This article is cited by

Search

Quick links