Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer

Abstract

The role of Notch signaling in prostate cancer has not been defined definitively. Several large scale tissue microarray studies have revealed that the expression of some Notch signaling components including the Jagged1 ligand are upregulated in advanced human prostate cancer specimens. Jagged1 expressed by tumor cells may activate Notch signaling in both adjacent tumor cells and cells in tumor microenvironment. However, it remains undetermined whether increased Jagged1 expression reflects a cause for or a consequence of tumor progression in vivo. To address this question, we generated a novel R26-LSL-JAG1 mouse model that enables spatiotemporal Jagged1 expression. Prostate specific upregulation of Jagged1 neither interferes with prostate epithelial homeostasis nor significantly accelerates tumor initiation or progression in the prostate-specific Pten deletion mouse model for prostate cancer. However, Jagged1 upregulation results in increased inflammatory foci in tumors and incidence of intracystic adenocarcinoma. In addition, Jagged1 overexpression upregulates Tgfβ signaling in prostate stromal cells and promotes progression of a reactive stromal microenvironment in the Pten null prostate cancer model. Collectively, Jagged1 overexpression does not significantly accelerate prostate cancer initiation and progression in the context of loss-of-function of Pten, but alters tumor histopathology and microenvironment. Our study also highlights an understudied role of Notch signaling in regulating prostatic stromal homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Radtke F, Raj K . The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003; 3: 756–767.

    Article  CAS  PubMed  Google Scholar 

  3. Ranganathan P, Weaver KL, Capobianco AJ . Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011; 11: 338–351.

    Article  CAS  PubMed  Google Scholar 

  4. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  5. Demehri S, Turkoz A, Kopan R . Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell. 2009; 16: 55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu H, Zhou X, Redfield S, Lewin J, Miele L . Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res 2013; 5: 368–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004; 64: 6854–6857.

    Article  CAS  PubMed  Google Scholar 

  8. Danza G, Serio CD, Ambrosio MR, Sturli N, Lonetto G, Rosati F et al. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int J Cancer 2013; 133: 2577–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005; 65: 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  10. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of Notch- and Hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012; 22: 373–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D et al. Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem 2011; 112: 78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 2010; 109: 726–736.

    CAS  PubMed  Google Scholar 

  13. Yong T, Sun A, Henry MD, Meyers S, Davis JN . Down regulation of CSL activity inhibits cell proliferation in prostate and breast cancer cells. J Cell Biochem 2011; 112: 2340–2351.

    Article  CAS  PubMed  Google Scholar 

  14. Kwon OJ, Valdez JM, Zhang L, Zhang B, Wei X, Su Q et al. Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nat Commun 2014; 5: 4416.

    Article  CAS  PubMed  Google Scholar 

  15. Valdez JM, Zhang L, Su Q, Dakhova O, Zhang Y, Shahi P et al. Notch and TGFbeta form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell stem cell 2012; 11: 676–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwon OJ, Zhang L, Wang J, Su Q, Feng Q, Zhang XH et al. Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. J Clin Invest 2016; e-pub ahead of print 14 June 2016.

  17. Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ . Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001; 61: 7291–7297.

    CAS  PubMed  Google Scholar 

  18. Dalrymple S, Antony L, Xu Y, Uzgare AR, Arnold JT, Savaugeot J et al. Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Res. 2005; 65: 9269–9279.

    Article  CAS  PubMed  Google Scholar 

  19. Velasco AM, Gillis KA, Li Y, Brown EL, Sadler TM, Achilleos M et al. Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 2004; 145: 3913–3924.

    Article  CAS  PubMed  Google Scholar 

  20. Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 2007; 204: 2935–2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vallejo DM, Caparros E, Dominguez M . Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J 2011; 30: 756–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bin Hafeez B, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res 2009; 15: 452–459.

    Article  CAS  PubMed  Google Scholar 

  23. Sethi N, Dai X, Winter CG, Kang Y . Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011; 19: 192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011; 121: 1298–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terada N, Shiraishi T, Zeng Y, Aw-Yong KM, Mooney SM, Liu Z et al. Correlation of Sprouty1 and Jagged1 with aggressive prostate cancer cells with different sensitivities to androgen deprivation. J Cell Biochem 2014; 115: 1505–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Y, Zhang Y, Guan W, Huang T, Kang J, Sheng X et al. Androgen receptor promotes the oncogenic function of overexpressed Jagged1 in prostate cancer by enhancing cyclin B1 expression via Akt phosphorylation. Mol Cancer Res 2014; 12: 830–842.

    Article  CAS  PubMed  Google Scholar 

  27. Jin C, McKeehan K, Wang F . Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate 2003; 57: 160–164.

    Article  CAS  PubMed  Google Scholar 

  28. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 2013; 73: 2718–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talmadge JE, Gabrilovich DI . History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013; 13: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gibb DR, Saleem SJ, Kang DJ, Subler MA, Conrad DH . ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch. J Immunol 2011; 186: 4244–4252.

    Article  CAS  PubMed  Google Scholar 

  31. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344: 921–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuxhorn JA, Ayala GE, Rowley DR . Reactive stroma in prostate cancer progression. J Urol 2001; 166: 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  33. Barron DA, Rowley DR . The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 2012; 19: R187–R204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barron DA, Strand DW, Ressler SJ, Dang TD, Hayward SW, Yang F et al. TGF-beta1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse. PLoS One 2010; 5: e13751.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu X, Xu K, Zhang L, Deng Y, Lee P, Shapiro E et al. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 2011; 356: 337–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orr B, Grace OC, Vanpoucke G, Ashley GR, Thomson AA . A role for notch signaling in stromal survival and differentiation during prostate development. Endocrinology 2009; 150: 463–472.

    Article  CAS  PubMed  Google Scholar 

  37. del Alamo D, Rouault H, Schweisguth F . Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 2011; 21: R40–R47.

    Article  CAS  PubMed  Google Scholar 

  38. LaVoie MJ, Selkoe DJ . The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 2003; 278: 34427–34437.

    Article  CAS  PubMed  Google Scholar 

  39. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012; 72: 1878–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ascano JM, Beverly LJ, Capobianco AJ . The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem 2003; 278: 8771–8779.

    Article  CAS  PubMed  Google Scholar 

  41. Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007; 67: 1757–1768.

    Article  CAS  PubMed  Google Scholar 

  42. Steg AD, Katre AA, Goodman B, Han HD, Nick AM, Stone RL et al. Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res 2011; 17: 5674–5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pedrosa AR, Trindade A, Carvalho C, Graca J, Carvalho S, Peleteiro MC et al. Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions. Oncotarget 2015; 6: 24404–24423.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morrison SJ, Scadden DT . The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 2013; 4: 1022–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alme AK, Karir BS, Faltas BM, Drake CG . Blocking immune checkpoints in prostate, kidney, and urothelial cancer: An overview. Urol Oncol 2016; 34: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  48. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003; 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  49. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON . Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 2007; 104: 181–186.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Spyros Artavanis-Tsakonas for providing the human Jagged1 cDNA, the technical support by the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the NIH (P30 AI036211, P30 CA125123 and S10 RR024574) and the expert assistance of Joel M. Sederstrom. This work is supported by NIH R01 CA190378 (L.X.), CA196570 (L.X.), NIH P30 CA125123 (the Cancer Center Shared Resources Grant), the Mouse Embryonic Stem Cell Core at Baylor College of Medicine and NCI.

Author contributions

QS, BZ, LZ and TD: collection and assembly of the data, data analysis and interpretation. DR and MI: data analysis and interpretation. LX: conception and design, manuscript writing, collection and/or assembly of the data, data analysis and interpretation, and final approval of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Xin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene Website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Zhang, B., Zhang, L. et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene 36, 618–627 (2017). https://doi.org/10.1038/onc.2016.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.232

This article is cited by

Search

Quick links