Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway

Abstract

Tumors utilize aerobic glycolysis to support growth and invasion. However, the molecular mechanisms that link metabolism with invasion are not well understood. The nutrient sensor O-linked-β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) modifies intracellular proteins with N-acetylglucosamine. Cancers display elevated O-GlcNAcylation and suppression of O-GlcNAcylation inhibits cancer invasion and metastasis. Here, we show that the regulation of cancer invasion by OGT is dependent on the NAD+-dependent deacetylase SIRT1. Reducing O-GlcNAcylation elevates SIRT1 levels and activity in an AMPK (AMP-activated protein kinase α)-dependent manner. Reduced O-GlcNAcylation in cancer cells leads to SIRT1-mediated proteasomal degradation of oncogenic transcription factor FOXM1 in an MEK/ERK-dependent manner. SIRT1 is critical for OGT-mediated regulation of FOXM1 ubiquitination and reducing SIRT1 activity reverses OGT-mediated regulation of FOXM1. Moreover, we show that SIRT1 levels are required for OGT-mediated regulation of invasion and metastasis in breast cancer cells. Thus, O-GlcNAcylation is a central component linking metabolism to invasion and metastasis via an SIRT1/ERK/FOXM1 axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104: 19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hart GW, Housley MP, Slawson C . Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007; 446: 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  4. Gao Y, Wells L, Comer FI, Parker GJ, Hart GW . Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001; 276: 9838–9845.

    Article  CAS  PubMed  Google Scholar 

  5. Butkinaree C, Park K, Hart GW . O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 2010; 1800: 96–106.

    Article  CAS  PubMed  Google Scholar 

  6. Lynch TP, Reginato MJ . O-GlcNAc transferase: a sweet new cancer target. Cell Cycle [Comment Editorial] 2011; 10: 1712–1713.

    Article  CAS  Google Scholar 

  7. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 2010; 29: 2831–2842.

    Article  CAS  PubMed  Google Scholar 

  8. Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ . Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem 2012; 287: 11070–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 2011; 1812: 514–519.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L et al. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol 2012; 29: 985–993.

    Article  CAS  PubMed  Google Scholar 

  11. Yang YR, Kim DH, Seo YK, Park D, Jang HJ, Choi SY et al. Elevated O-GlcNAcylation promotes colonic inflammation and tumorigenesis by modulating NF-kappaB signaling. Oncotarget 2015; 6: 12529–12542.

    PubMed  PubMed Central  Google Scholar 

  12. Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN et al. mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer. Mol Cancer Res 2015; 13: 923–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 2014; 54: 820–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C et al. GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 2010; 70: 6344–6351.

    Article  CAS  PubMed  Google Scholar 

  15. Koo CY, Muir KW, Lam EW . FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta 2012; 1819: 28–37.

    Article  CAS  PubMed  Google Scholar 

  16. Lok GT, Chan DW, Liu VW, Hui WW, Leung TH, Yao KM et al. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS One 2011; 6: e23790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM . Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 2005; 118 (Pt 4): 795–806.

    Article  CAS  PubMed  Google Scholar 

  18. Imai S, Guarente L . NAD+ and sirtuins in aging and disease. Trends Cell Biol 2014; 24: 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi JE, Mostoslavsky R . Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 2014; 26: 24–32.

    Article  CAS  PubMed  Google Scholar 

  20. Haigis MC, Sinclair DA . Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010; 1: 3.

    Article  PubMed  Google Scholar 

  22. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008; 3: e2020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roth M, Chen WY . Sorting out functions of sirtuins in cancer. Oncogene 2014; 33: 1609–1620.

    Article  CAS  PubMed  Google Scholar 

  24. Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 2008; 32: 11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L . SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep] 2013; 3: 1175–1186.

    Article  CAS  Google Scholar 

  26. Dang CV . Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149–159.

    CAS  PubMed  Google Scholar 

  28. O'Donnell N, Zachara NE, Hart GW, Marth JD . Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 2004; 24: 1680–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lau AW, Liu P, Inuzuka H, Gao D . SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 2014; 4: 245–255.

    PubMed  PubMed Central  Google Scholar 

  31. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013; 339: 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park HJ, Wang Z, Costa RH, Tyner A, Lau LF, Raychaudhuri P . An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene 2008; 27: 1696–1704.

    Article  CAS  PubMed  Google Scholar 

  34. Park HJ, Costa RH, Lau LF, Tyner AL, Raychaudhuri P . Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol Cell Biol 2008; 28: 5162–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yeung F, Ramsey CS, Popko-Scibor AE, Allison DF, Gray LG, Shin M et al. Regulation of the mitogen-activated protein kinase kinase (MEK)-1 by NAD(+)-dependent deacetylases. Oncogene 2015; 34: 798–804.

    Article  CAS  PubMed  Google Scholar 

  36. Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 2014; 289: 10592–10606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kreppel LK, Blomberg MA, Hart GW . Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 1997; 272: 9308–9315.

    Article  CAS  PubMed  Google Scholar 

  38. Bond MR, Hanover JA . A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 2015; 208: 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang T, Kraus WL . SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta 2010; 1804: 1666–1675.

    Article  CAS  PubMed  Google Scholar 

  41. Chang HC, Guarente L . SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 2014; 25: 138–145.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis BA, Hanover JA . O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 2014; 289: 34440–34448.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bajpe PK, Prahallad A, Horlings H, Nagtegaal I, Beijersbergen R, Bernards R . A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene 2015; 34: 531–536.

    Article  CAS  PubMed  Google Scholar 

  44. Ma Z, Vocadlo DJ, Vosseller K . Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem 2013; 288: 15121–15130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guarente L . Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 81–90.

    Article  CAS  PubMed  Google Scholar 

  46. Fulop N, Feng W, Xing D, He K, Not LG, Brocks CA et al. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 2008; 9: 139–151.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 2012; 11: 439–448.

    Article  CAS  PubMed  Google Scholar 

  48. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ . Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 2011; 7: 174–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15: 675–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrer CM, Reginato MJ . Cancer metabolism: cross talk between signaling and O-GlcNAcylation. Methods Mol Biol 2014; 1176: 73–88.

    Article  CAS  PubMed  Google Scholar 

  52. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ et al. ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 2010; 123 (Pt 8): 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Valerie Sodi for critical reading of this manuscript. This work is supported by NCI grants CA183574 (to CMF), CA155413 (to MJR) and NIH/NIA grant AG028730 (to DAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Reginato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, C., Lu, T., Bacigalupa, Z. et al. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene 36, 559–569 (2017). https://doi.org/10.1038/onc.2016.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.228

This article is cited by

Search

Quick links