Original Article | Published:

p27Kip1 represses the Pitx2-mediated expression of p21Cip1 and regulates DNA replication during cell cycle progression

Oncogene volume 36, pages 350361 (19 January 2017) | Download Citation

Abstract

The tumor suppressor p21 regulates cell cycle progression and peaks at mid/late G1. However, the mechanisms regulating its expression during cell cycle are poorly understood. We found that embryonic fibroblasts from p27 null mice at early passages progress slowly through the cell cycle. These cells present an elevated basal expression of p21 suggesting that p27 participates to its repression. Mechanistically, we found that p27 represses the expression of Pitx2 (an activator of p21 expression) by associating with the ASE-regulatory region of this gene together with an E2F4 repressive complex. Furthermore, we found that Pitx2 binds to the p21 promoter and induces its transcription. Finally, silencing Pitx2 or p21 in proliferating cells accelerates DNA replication and cell cycle progression. Collectively, these results demonstrate an unprecedented connection between p27, Pitx2 and p21 relevant for the regulation of cell cycle progression and cancer and for understanding human pathologies associated with p27 germline mutations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    . Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13: 261–291.

  2. 2.

    . Physiological relevance of cell cycle kinases. Physiol Rev 2011; 91: 973–1007.

  3. 3.

    , , , , , et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009; 8: 1150–1157.

  4. 4.

    , . The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 2012; 7: 10.

  5. 5.

    , , . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

  6. 6.

    , . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

  7. 7.

    , . Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140: 3079–3093.

  8. 8.

    . p21WAF1/Cip1: more than a break to the cell cycle? Biochim Biophys Acta - Rev Cancer 2000; 1471: M43–M56.

  9. 9.

    , , , , , et al. p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes. Oncogene 2012; 31: 4207–4220.

  10. 10.

    , , , , , et al. p27(Kip1) directly represses Sox2 during embryonic stem cell differentiation. Cell Stem Cell 2012; 11: 845–852.

  11. 11.

    , , , , , et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 2006; 20: 1511–1524.

  12. 12.

    , . Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2012; 22: 33–41.

  13. 13.

    , , , , , et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 2004; 6: 1229–1235.

  14. 14.

    , . Hox gene regulation and timing in embryogenesis. Semin Cell Dev Biol 2014; 34: 76–84.

  15. 15.

    , , , . The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 2013; 70: 3791–3811.

  16. 16.

    , . Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J 1991; 10: 3331–3341.

  17. 17.

    , , , , , et al. Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21. Dev Biol 2010; 347: 289–300.

  18. 18.

    , , , , , et al. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell 2001; 7: 137–149.

  19. 19.

    , , , , , et al. Correlation between E2F-1 requirement in the S phase and E2F-1 transactivation of cell cycle-related genes in human cells. Cancer Res 1994; 54: 1402–1406.

  20. 20.

    , , , , . P21 functions to maintain quiescence of p27-deficient hepatocytes. J Biol Chem 2002; 277: 41417–41422.

  21. 21.

    , , , , , et al. The p21(Cip1) protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology 2002; 35: 1063–1071.

  22. 22.

    , , , . Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells. CNS Neurol Disord Drug Targets 2012; 11: 884–892.

  23. 23.

    , . Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126: 4643–4651.

  24. 24.

    , , , , . Ngan HYS. Increased expression of PITX2 transcription factor contributes to ovarian cancer progression. PLoS One 2012; 7: e37076.

  25. 25.

    , , , , , et al. A gene expression classifier of node-positive colorectal cancer. Neoplasia 2009; 11: 1074–1083.

  26. 26.

    , , , , . Pituitary homeobox 2 (PITX2) promotes thyroid carcinogenesis by activation of cyclin D2. Cell Cycle 2010; 9: 1333–1341.

  27. 27.

    , , , , , . Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 2005; 65: 10214–10222.

  28. 28.

    , , . Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma. Mol Cell Biochem 2013; 384: 221–227.

  29. 29.

    , , . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

  30. 30.

    , , , , , et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res 2015; 43: 6860–6873.

  31. 31.

    , , , , , . The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 2013; 155: 369–383.

  32. 32.

    , , , , . p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004; 18: 862–876.

  33. 33.

    , , , . A new advance in alternative splicing databases: from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. BMC Bioinformatics 2007; 8: 180.

  34. 34.

    , , , . FAST DB: a website resource for the study of the expression regulation of human gene products. Nucleic Acids Res 2005; 33: 4276–4284.

  35. 35.

    , , , . Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275.

  36. 36.

    , , , , . Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci U S A 2004; 101: 16537–16542.

  37. 37.

    , , , , . Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 2011; 85: 3187–3202.

Download references

Acknowledgements

We would like to thank to Dr Hiroshi Hamada, Dr Chrissa Kioussi, Dr Charles P Emerson and Dr Nobuko Hagiwara for the kind gift of Pitx2-ASE luciferase vector, the expression vector for Pitx2, the expression vector for Zic1 and the expression vector for Sox6, respectively. This work was supported by grants from the Ministerio de Economia y Competitividad (MINECO) SAF2012-38078 and from the Instituto de Salud Carlos III RD12/0036/0054. AB is supported by grants from the Fondation ARC pour la Recherche sur le Cancer, Ligue Nationale Contre le Cancer and Institut National du Cancer. The data set has been deposited in ArrayExpress accession number E-MTAB-2790.

Author information

Affiliations

  1. Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain

    • E Gallastegui
    • , A Biçer
    • , S Orlando
    • , M J Pujol
    •  & O Bachs
  2. INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France

    • A Besson
  3. Université de Toulouse, Toulouse, France

    • A Besson
  4. CNRS ERL5294, Toulouse, France

    • A Besson

Authors

  1. Search for E Gallastegui in:

  2. Search for A Biçer in:

  3. Search for S Orlando in:

  4. Search for A Besson in:

  5. Search for M J Pujol in:

  6. Search for O Bachs in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to O Bachs.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/onc.2016.200

Supplementary Information accompanies this paper on the Oncogene website (http://www.nature.com/onc)