Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Extracellular lumican augments cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells via autophagy inhibition

Abstract

Lumican, an extracellular matrix proteoglycan overexpressed by pancreatic stellate cells (PSCs) and pancreatic ductal adenocarcinoma cells (PDACs), drives the formation of a tumor-specific microenvironment. We recently showed that extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Here we investigated the role of extracellular lumican in chemotherapy-mediated cancer therapy. Lumican secretion was increased by chemotherapeutic agents in PDAC, and especially in PSCs, and appeared to be linked to the extent of cells’ response to chemotherapy-induced growth inhibition. In multiple PDAC models, including cell lines, patient-derived xenografts and lumican knockout mice, lumican significantly increased antitumor effect of chemotherapy. This effect was associated with DNA damage, apoptosis and inhibition of cell viability, glucose consumption, lactate production and vascular endothelial growth factor secretion. In PDAC cells, chemotherapeutic agents triggered autophagosome formation and increased LC3 expression through the reactive oxygen species-mediated AMP-activated kinase (AMPK) signaling pathway. Inhibition of gemcitabine-induced autophagy in cancer cells by treatment with AMPK inhibitor compound C, lysosomal inhibitor chloroquine or autophagy inhibitor 3MA enhanced gemcitabine-induced apoptosis, suggesting that autophagy is a protective cellular response to gemcitabine treatment. Importantly, lumican dramatically decreased AMPK activity, inhibiting chemotherapy-induced autophagy in both in vitro and in vivo PDAC models. Co-treatment of PDAC cells with lumican and gemcitabine increased mitochondrial damage, reactive oxygen species (ROS) production and cytochrome c release, indicating that lumican-induced disruption of mitochondrial function may be the mechanism of sensitization to gemcitabine. Together, our findings demonstrate that extracellular lumican augments cytotoxicity of chemotherapy in PDAC cells through inhibition of chemotherapeutic agent-induced autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  PubMed  Google Scholar 

  3. Hamada S, Masamune A, Shimosegawa T . Novel therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer. Front Physiol 2013; 4: 331.

    PubMed  PubMed Central  Google Scholar 

  4. Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG, Benson AB 3rd . Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol 2002; 20: 3270–3275.

    Article  CAS  PubMed  Google Scholar 

  5. Herrmann R, Bodoky G, Ruhstaller T, Glimelius B, Bajetta E, Schuller J et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol 2007; 25: 2212–2217.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Truty MJ, Kang Y, Chopin-Laly X, Zhang R, Roife DJ et al. Extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Clin Cancer Res 2014; 20: 6529–6540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 2012; 61: 172–178.

    Article  CAS  PubMed  Google Scholar 

  8. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 2004; 29: 179–187.

    Article  CAS  PubMed  Google Scholar 

  9. Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 2008; 68: 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  10. Masamune A, Shimosegawa T . Pancreatic stellate cells—multi-functional cells in the pancreas. Pancreatology 2013; 13: 102–105.

    Article  CAS  PubMed  Google Scholar 

  11. Erkan M, Kleeff J, Gorbachevski A, Reiser C, Mitkus T, Esposito I et al. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 2007; 132: 1447–1464.

    Article  CAS  PubMed  Google Scholar 

  12. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25: 719–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25: 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Andrade de Paula CA, Carneiro CR, Ortiz V et al. Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res 2013; 319: 967–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iozzo RV . Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67: 609–652.

    Article  CAS  PubMed  Google Scholar 

  16. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H . Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 1998; 141: 1277–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN . Lumican, a small leucine-rich proteoglycan. IUBMB Life 2008; 60: 818–823.

    Article  CAS  PubMed  Google Scholar 

  18. Baba H, Ishiwata T, Takashi E, Xu G, Asano G . Expression and localization of lumican in the ischemic and reperfused rat heart. Jpn Circ J 2001; 65: 445–450.

    Article  CAS  PubMed  Google Scholar 

  19. Lu YP, Ishiwata T, Kawahara K, Watanabe M, Naito Z, Moriyama Y et al. Expression of lumican in human colorectal cancer cells. Pathol Int 2002; 52: 519–526.

    Article  CAS  PubMed  Google Scholar 

  20. Ishiwata T, Cho K, Kawahara K, Yamamoto T, Fujiwara Y, Uchida E et al. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer. Oncol Rep 2007; 18: 537–543.

    CAS  PubMed  Google Scholar 

  21. Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE . Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci USA 2014; 111: 11798–11803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 2012; 287: 3265–3272.

    Article  CAS  PubMed  Google Scholar 

  23. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4: e838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo Y, Kanzawa T, Sawaya R, Kondo S . The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726–734.

    Article  CAS  PubMed  Google Scholar 

  25. Maycotte P, Thorburn A . Autophagy and cancer therapy. Cancer Biol Ther 2011; 11: 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janku F, McConkey DJ, Hong DS, Kurzrock R . Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 2011; 8: 528–539.

    Article  CAS  PubMed  Google Scholar 

  27. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hardie DG . AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hardie DG . AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 2014; 33C: 1–7.

    Google Scholar 

  30. Shaw RJ . LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009; 196: 65–80.

    Article  CAS  Google Scholar 

  31. Rehman G, Shehzad A, Khan AL, Hamayun M . Role of AMP-activated protein kinase in cancer therapy. Arch Pharm (Weinheim) 2014; 347: 457–468.

    Article  CAS  Google Scholar 

  32. Zhu H, Moriasi CM, Zhang M, Zhao Y, Zou MH . Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Czeta is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation. J Biol Chem 2013; 288: 16495–16505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masamune A, Shimosegawa T . Signal transduction in pancreatic stellate cells. J Gastroenterol 2009; 44: 249–260.

    Article  PubMed  Google Scholar 

  34. Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE et al. Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol 2012; 19(Suppl 3): S395–S403.

    Article  PubMed  Google Scholar 

  35. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE . Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 2009; 4: 1670–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z . AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget 2015; 6: 11507–11518.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Viragh Family Foundation (to JF), the W. Smith Foundation (to JF) and National Institutes of Health (NIH) grant T32CA009599 (to DR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J B Fleming.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Roife, D., Kang, Y. et al. Extracellular lumican augments cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells via autophagy inhibition. Oncogene 35, 4881–4890 (2016). https://doi.org/10.1038/onc.2016.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.20

This article is cited by

Search

Quick links