Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PRMT5–PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells

Abstract

Glioblastoma (GBM) represents the most common and aggressive histologic subtype among malignant astrocytoma and is associated with poor outcomes because of heterogeneous tumour cell population including mature non-stem-like cell and immature stem-like cells within the tumour. Thus, it is critical to find new target-specific therapeutic modalities. Protein arginine methyltransferase enzyme 5 (PRMT5) regulates many cellular processes through its methylation activity and its overexpression in GBM is associated with more aggressive disease. Previously, we have shown that silencing of PRMT5 expression in differentiated GBM cell lines results in apoptosis and reduced tumour growth in mice. Here, we report the critical role of PRMT5 in GBM differentiated cells (GBMDC) grown in serum and GBM neurospheres (GBMNS) grown as neurospheres in vitro. Our results uncover a very significant role for PRMT5 in GBMNS self-renewal capacity and proliferation. PRMT5 knockdown in GBMDC led to apoptosis, knockdown in GBMNS led to G1 cell cycle arrest through upregulation of p27 and hypophoshorylation of retinoblastoma protein, leading to senescence. Comparison of impact of PRMT5 on cellular signalling by the Human Phospho-Kinase Array and chromatin immunoprecipitation-PCR revealed that unlike GBMDC, PRMT5 regulates PTEN expression and controls Akt and ERk activity in GBMNS. In vivo transient depletion of PRMT5 decreased intracranial tumour size and growth rate in mice implanted with both primary tumour-derived GBMNS and GBMDC. This is the first study to identify PTEN as a potential downstream target of PRMT5 and PRMT5 is vital to support both mature and immature GBM tumour cell populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012; 26: 756–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  3. Masui K, Cloughesy TF, Mischel PS . Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 2012; 38: 271–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 2010; 16: 2443–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scoumanne A, Zhang J, Chen X . PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 2009; 37: 4965–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 2009; 16: 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630–9645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan F, Alinari L, Lustberg ME, Martin LK, Cordero-Nieves HM, Banasavadi-Siddegowda Y et al. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 2014; 74: 1752–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han X, Li R, Zhang W, Yang X, Wheeler CG, Friedman GK et al. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro. J Neurooncol 2014; 118: 61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338: 1080–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karberg S . Switching on epigenetic therapy. Cell 2009; 139: 1029–1031.

    Article  CAS  PubMed  Google Scholar 

  12. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391–403.

    Article  CAS  PubMed  Google Scholar 

  14. Gu C, Banasavadi-Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S et al. Tumor-specific activation of the C-JUN/MELK pathway regulates glioma stem cell growth in a p53-dependent manner. Stem Cells 2013; 31: 870–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  16. Adams PD, Kaelin WG Jr. . Transcriptional control by E2F. Semin Cancer Biol 1995; 6: 99–108.

    Article  CAS  PubMed  Google Scholar 

  17. Qian Y, Luckey C, Horton L, Esser M, Templeton DJ . Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Mol Cell Biol 1992; 12: 5363–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevaux O, Dyson NJ . A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14: 684–691.

    Article  CAS  PubMed  Google Scholar 

  19. Dahiya A, Wong S, Gonzalo S, Gavin M, Dean DC . Linking the Rb and polycomb pathways. Mol Cell 2001; 8: 557–569.

    Article  CAS  PubMed  Google Scholar 

  20. Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D . Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 2001; 21: 6484–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ . Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993; 7: 331–342.

    Article  CAS  PubMed  Google Scholar 

  22. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM . Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993; 73: 487–497.

    Article  CAS  PubMed  Google Scholar 

  23. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA . Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70: 993–1006.

    Article  CAS  PubMed  Google Scholar 

  24. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  25. Hengst L, Reed SI . Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol 1998; 227: 25–41.

    CAS  PubMed  Google Scholar 

  26. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  27. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    Article  CAS  PubMed  Google Scholar 

  28. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J et al. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 2013; 341: 399–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldstein S . Replicative senescence: the human fibroblast comes of age. Science 1990; 249: 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  30. Sherwood SW, Rush D, Ellsworth JL, Schimke RT . Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci USA 1988; 85: 9086–9090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cristofalo VJ, Phillips PD, Sorger T, Gerhard G . Alterations in the responsiveness of senescent cells to growth factors. J Gerontol 1989; 44: 55–62.

    Article  CAS  PubMed  Google Scholar 

  32. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shay JW, Pereira-Smith OM, Wright WE . A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991; 196: 33–39.

    Article  CAS  PubMed  Google Scholar 

  34. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  35. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  36. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  37. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP . Pro-senescence therapy for cancer treatment. Nat Rev Cancer 2011; 11: 503–511.

    Article  CAS  PubMed  Google Scholar 

  38. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW . Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 2007; 104: 13028–13033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010; 464: 374–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 2010; 120: 681–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan W, Gu Z, Shen B, Jiang J, Meng Y, Da Z et al. PTEN/Akt-p27(kip1) signaling promote the BM-MSCs senescence and apoptosis in SLE patients. J Cell Biochem 2015; 116: 1583–1594.

    Article  CAS  PubMed  Google Scholar 

  42. Lee JJ, Kim BC, Park MJ, Lee YS, Kim YN, Lee BL et al. PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 2011; 18: 666–677.

    Article  CAS  PubMed  Google Scholar 

  43. Ali IU, Schriml LM, Dean M . Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 1999; 91: 1922–1932.

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  45. McDowell KA, Riggins GJ, Gallia GL . Targeting the AKT pathway in glioblastoma. Curr Pharm Des 2011; 17: 2411–2420.

    Article  CAS  PubMed  Google Scholar 

  46. Otsuki A, Patel A, Kasai K, Suzuki M, Kurozumi K, Chiocca EA et al. Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol Ther 2008; 16: 1546–1555.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by: Kaur: NIH RO1 (CA150153), NIH P01 (CA163205), NIH P30 (NS045758), NIH RO1 (NS064607); Baiocchi: NIH R21 NS071346 and Yoo: IRG-67-003-50.

Author contributions

Conception and design: YK Banasavadi-Siddegowda, B Kaur and R Baiocchi. Development of methodology: YK Banasavadi-Siddegowda. Acquisition of data: YK Banasavadi-Siddegowda, L Russell, E Frair, Vrajesh A Karkhanis, T Relation and J Yoo. Analysis and interpretation of data: YK Banasavadi-Siddegowda, B Kaur, R Baiocchi, J Zhang and J Imitola. Writing, review and/or revision of manuscript: YK Banasavadi-Siddegowda, B Kaur and R Baiocchi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Baiocchi or B Kaur.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banasavadi-Siddegowda, Y., Russell, L., Frair, E. et al. PRMT5–PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene 36, 263–274 (2017). https://doi.org/10.1038/onc.2016.199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.199

This article is cited by

Search

Quick links