Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microtubule-associated protein 4 is an important regulator of cell invasion/migration and a potential therapeutic target in esophageal squamous cell carcinoma

Abstract

Cell invasion and migration significantly contribute to tumor metastasis. Microtubule-associated protein 4 (MAP4) protein is one member of microtubule-associate proteins family. It is responsible for stabilization of microtubules by modulation of microtubule dynamics. However, there is little information about the involvement of MAP4 in human cancer. Here we show that MAP4 serves as a regulator of invasion and migration in esophageal squamous cancer cells. By activating the ERK-c-Jun-vascular endothelial growth factor A signaling pathway, MAP4 promotes cell invasion and migration in vitro, tumor growth and metastasis in mouse models. Immunohistochemical staining of operative tissues indicated that MAP4 expression was associated with tumor stage, lymph node metastasis and shorter survival of the patients with esophageal squamous cell carcinoma (ESCC). Multivariate Cox regression analysis showed that MAP4 is an independent prognostic indicator. In the serial sections of ESCC tissues, there was a positive correlation between MAP4 and vascular endothelial growth factor A expression. Notably, an intratumoral injection of MAP4-small interfering RNA (siRNA) remarkably inhibited the growth of the tumors that formed by the MAP4-expressing ESCC cells in nude mice, and a combination of MAP4-siRNA and Bevacizumab significantly enhanced the inhibition effect. Our data suggest that MAP4 is probably a useful prognostic biomarker and a potential therapeutic target for the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. He YT, Hou J, Chen ZF, Qiao CY, Song GH, Meng FS et al. Decrease in the esophageal cancer incidence rate in mountainous but not level parts of Cixian County, China, over 29 years. Asian Pac J Cancer Prev 2005; 6: 510–514.

    PubMed  Google Scholar 

  2. Luo ML, Shen XM, Zhang Y, Wei F, Xu X, Cai Y et al. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 2006; 66: 11690–11699.

    Article  CAS  Google Scholar 

  3. Permana S, Hisanaga S, Nagatomo Y, Iida J, Hotani H, Itoh TJ . Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamic instability. Cell Struct Funct 2005; 29: 147–157.

    Article  CAS  Google Scholar 

  4. Kremer BE, Haystead T, Macara IG . Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 2005; 16: 4648–4659.

    Article  CAS  Google Scholar 

  5. Hu JY, Chu ZG, Han J, Dang YM, Yan H, Zhang Q et al. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci 2010; 67: 321–333.

    Article  CAS  Google Scholar 

  6. Ookata K, Hisanaga S, Bulinski JC, Murofushi H, Aizawa H, Itoh TJ et al. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 1995; 128: 849–862.

    Article  CAS  Google Scholar 

  7. Chang W, Gruber D, Chari S, Kitazawa H, Hamazumi Y, Hisanaga S et al. Phosphorylation of MAP4 affects microtubule properties and cell cycle progression. J Cell Sci 2001; 114: 2879–2887.

    CAS  PubMed  Google Scholar 

  8. Murphy M, Hinman A, Levine AJ . Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 1996; 10: 2971–2980.

    Article  CAS  Google Scholar 

  9. Ou Y, Zheng X, Gao Y, Shu M, Leng T, Li Y et al. Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics. Urol Oncol 2014; 32: 47.e21–47.e28.

    Article  CAS  Google Scholar 

  10. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    CAS  Google Scholar 

  11. Lee WJ, Chen WK, Wang CJ, Lin WL, Tseng TH . Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 2008; 226: 178–191.

    Article  CAS  Google Scholar 

  12. Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV et al. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 2006; 66: 7103–7110.

    Article  CAS  Google Scholar 

  13. Honma N, Genda T, Matsuda Y, Yamagiwa S, Takamura M, Ichida T et al. MEK/ERK signaling is a critical mediator for integrin-induced cell scattering in highly metastatic hepatocellular carcinoma cells. Lab Invest 2006; 86: 687–696.

    Article  CAS  Google Scholar 

  14. Galliher AJ, Schiemann WP . Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 2007; 67: 3752–3758.

    Article  CAS  Google Scholar 

  15. Zhu B, Shi S, Ma YG, Fan F, Yao ZZ . Lysophosphatidic acid enhances human hepatocellular carcinoma cell migration, invasion and adhesion through P38 MAPK pathway. Hepatogastroenterology 2012; 59: 785–789.

    CAS  PubMed  Google Scholar 

  16. Patel V, Marsh CA, Dorsam RT, Mikelis CM, Masedunskas A, Amornphimoltham P et al. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 2011; 71: 7103–7112.

    Article  CAS  Google Scholar 

  17. Fruchon S, Kheirallah S, Al Saati T, Ysebaert L, Laurent C, Leseux L et al. Involvement of the Syk-mTOR pathway in follicular lymphoma cell invasion and angiogenesis. Leukemia 2012; 26: 795–805.

    Article  CAS  Google Scholar 

  18. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G . The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 1992; 267: 6093–6098.

    CAS  Google Scholar 

  19. Park JE, Keller GA, Ferrara N . The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993; 4: 1317–1326.

    Article  CAS  Google Scholar 

  20. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ . Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 2000; 60: 5334–5339.

    CAS  Google Scholar 

  21. Chen HX, Gore-Langton RE, Cheson BD . Clinical trials referral resource: Current clinical trials of the anti-VEGF monoclonal antibody bevacizumab. Oncology (Williston Park) 2001; 15: 1017 1020, 1023-1016.

    Google Scholar 

  22. Enzinger PC, Mayer RJ . Esophageal cancer. N Engl J Med 2003; 349: 2241–2252.

    Article  CAS  Google Scholar 

  23. Parysek LM, Asnes CF, Olmsted JB . MAP 4: occurrence in mouse tissues. J Cell Biol 1984; 99: 1309–1315.

    Article  CAS  Google Scholar 

  24. Xu YB, Du QH, Zhang MY, Yun P, He CY . Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells. Eur Rev Med Pharmacol Sci 2013; 17: 2486–2494.

    PubMed  Google Scholar 

  25. Jiang G, Cao F, Ren G, Gao D, Bhakta V, Zhang Y et al. PRSS3 promotes tumour growth and metastasis of human pancreatic cancer. Gut 2010; 59: 1535–1544.

    Article  CAS  Google Scholar 

  26. Deng Z, Sui G, Rosa PM, Zhao W . Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One 2012; 7: e36739.

    Article  CAS  Google Scholar 

  27. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196: 1497–1506.

    Article  CAS  Google Scholar 

  28. Gerber HP, Dixit V, Ferrara N . Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998; 273: 13313–13316.

    Article  CAS  Google Scholar 

  29. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–30343.

    Article  CAS  Google Scholar 

  30. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  Google Scholar 

  31. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  Google Scholar 

  32. Shibuya M . Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 2006; 39: 469–478.

    CAS  PubMed  Google Scholar 

  33. Kappas NC, Zeng G, Chappell JC, Kearney JB, Hazarika S, Kallianos KG et al. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J Cell Biol 2008; 181: 847–858.

    Article  CAS  Google Scholar 

  34. Weigand M, Hantel P, Kreienberg R, Waltenberger J . Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 2005; 8: 197–204.

    Article  CAS  Google Scholar 

  35. Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 2007; 4: e186.

    Article  Google Scholar 

  36. Darrington E, Zhong M, Vo BH, Khan SA . Vascular endothelial growth factor A, secreted in response to transforming growth factor-beta1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells. Asian J Androl 2012; 14: 745–751.

    Article  CAS  Google Scholar 

  37. Brock A, Krause S, Li H, Kowalski M, Goldberg MS, Collins JJ et al. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 2014; 6: 217ra212.

    Article  Google Scholar 

  38. Tekedereli I, Alpay SN, Akar U, Yuca E, Ayugo-Rodriguez C, Han HD et al. Therapeutic silencing of Bcl-2 by systemically administered siRNA nanotherapeutics inhibits tumor growth by autophagy and apoptosis and enhances the efficacy of chemotherapy in orthotopic xenograft models of ER (-) and ER (+) breast cancer. Mol Ther Nucleic Acids 2013; 2: e121.

    Article  Google Scholar 

  39. Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y et al. Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 2009; 124: 578–588.

    Article  CAS  Google Scholar 

  40. Zhang Y, Feng YB, Shen XM, Chen BS, Du XL, Luo ML et al. Exogenous expression of Esophagin/SPRR3 attenuates the tumorigenicity of esophageal squamous cell carcinoma cells via promoting apoptosis. Int J Cancer 2008; 122: 260–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81330052 and 81321091) and National High-Tech R&D Program of China (2012AA02A503 and 2012AA020206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-R Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YY., Shang, L., Shi, ZZ. et al. Microtubule-associated protein 4 is an important regulator of cell invasion/migration and a potential therapeutic target in esophageal squamous cell carcinoma. Oncogene 35, 4846–4856 (2016). https://doi.org/10.1038/onc.2016.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.17

This article is cited by

Search

Quick links