Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs

Subjects

Abstract

Using a 4-hydroxytamoxifen (4OHT)-inducible, conditional Sos1-null mutation, we analyzed wild-type (WT), single Sos1-KO, Sos2-KO and double Sos1/2 KO primary mouse embryonic fibroblasts (MEF) with an aim at evaluating the functional specificity or redundancy of the Sos1 and Sos2 alleles at the cellular level. The 4OHT-induced Sos1-KO and Sos1/2-DKO MEFs exhibited distinct flat morphology, enlarged cell perimeter and altered cytoskeletal organization that were not observed in the WT and Sos2-KO counterparts. The Sos1-KO and Sos1/2-DKO MEFs also displayed significant accumulation, in comparison with WT and Sos2-KO MEFs, of cytoplasmic vesicular bodies identified as autophagosomes containing degraded mitochondria by means of electron microscopy and specific markers. Cellular proliferation and migration were impaired in Sos1-KO and Sos1/2-DKO MEFs in comparison with WT and Sos2-KO MEFs, whereas cell adhesion was only impaired upon depletion of both Sos isoforms. RasGTP formation was practically absent in Sos1/2-DKO MEFs as compared with the other genotypes and extracellular signal-regulated kinase phosphorylation showed only significant reduction after combined Sos1/2 depletion. Consistent with a mitophagic phenotype, in vivo labeling with specific fluorophores uncovered increased levels of oxidative stress (elevated intracellular reactive oxygen species and mitochondrial superoxide and loss of mitochondrial membrane potential) in the Sos1-KO and the Sos1/2-DKO cells as compared with Sos2-KO and WT MEFs. Interestingly, treatment of the MEF cultures with antioxidants corrected the altered phenotypes of Sos1-KO and Sos1/2-DKO MEFs by restoring their altered perimeter size and proliferative rate to levels similar to those of WT and Sos2-KO MEFs. Our data uncover a direct mechanistic link between Sos1 and control of intracellular oxidative stress, and demonstrate functional prevalence of Sos1 over Sos2 with regards to cellular proliferation and viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Buday L, Downward J . Many faces of Ras activation. Biochim Biophys Acta 2008; 1786: 178–187.

    CAS  PubMed  Google Scholar 

  2. Karnoub AE, Weinberg RA . Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    Article  CAS  Google Scholar 

  3. Castellano E, Santos E . Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2: 216–231.

    Article  CAS  Google Scholar 

  4. Rojas JM, Oliva JL, Santos E . Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer 2011; 2: 298–305.

    Article  CAS  Google Scholar 

  5. Cherfils J, Zeghouf M . Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93: 269–309.

    Article  CAS  Google Scholar 

  6. Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I . Ras activation revisited: role of GEF and GAP systems. Biol Chem 2015; 396: 831–848.

    Article  CAS  Google Scholar 

  7. Groves JT, Kuriyan J . Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 2010; 17: 659–665.

    Article  CAS  Google Scholar 

  8. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  Google Scholar 

  9. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993; 260: 1338–1343.

    Article  CAS  Google Scholar 

  10. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D . Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 1993; 363: 88–92.

    Article  CAS  Google Scholar 

  11. Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G et al. An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol 2001; 154: 1031–1044.

    Article  CAS  Google Scholar 

  12. Nimnual A, Bar-Sagi D . The two hats of SOS. Sci STKE 2002; 2002: pe36.

    PubMed  Google Scholar 

  13. Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K et al. The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J 2000; 19: 642–654.

    Article  CAS  Google Scholar 

  14. Esteban LM, Fernandez-Medarde A, Lopez E, Yienger K, Guerrero C, Ward JM et al. Ras-guanine nucleotide exchange factor sos2 is dispensable for mouse growth and development. Mol Cell Biol 2000; 20: 6410–6413.

    Article  CAS  Google Scholar 

  15. Arai JA, Li S, Feig LA . Sos2 is dispensable for NMDA-induced Erk activation and LTP induction. Neurosci Lett 2009; 455: 22–25.

    Article  CAS  Google Scholar 

  16. Poltorak M, Meinert I, Stone JC, Schraven B, Simeoni L . Sos1 regulates sustained TCR-mediated Erk activation. Eur J Immunol 2014; 44: 1535–1540.

    Article  CAS  Google Scholar 

  17. Kortum RL, Sommers CL, Alexander CP, Pinski JM, Li W, Grinberg A et al. Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci USA 2011; 108: 12407–12412.

    Article  CAS  Google Scholar 

  18. Sakaue M, Bowtell D, Kasuga M . A dominant-negative mutant of mSOS1 inhibits insulin-induced Ras activation and reveals Ras-dependent and -independent insulin signaling pathways. Mol Cell Biol 1995; 15: 379–388.

    Article  CAS  Google Scholar 

  19. Wang DZ, Hammond VE, Abud HE, Bertoncello I, McAvoy JW, Bowtell DD . Mutation in Sos1 dominantly enhances a weak allele of the EGFR, demonstrating a requirement for Sos1 in EGFR signaling and development. Genes Dev 1997; 11: 309–320.

    Article  CAS  Google Scholar 

  20. Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr Biol 2006; 16: 2173–2179.

    Article  CAS  Google Scholar 

  21. Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T . Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med 2003; 198: 1841–1851.

    Article  CAS  Google Scholar 

  22. Kumkhaek C, Aerbajinai W, Liu W, Zhu J, Uchida N, Kurlander R et al. MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway. Blood 2013; 121: 3216–3227.

    Article  CAS  Google Scholar 

  23. Kortum RL, Sommers CL, Pinski JM, Alexander CP, Merrill RK, Li W et al. Deconstructing Ras signaling in the thymus. Mol Cell Biol 2012; 32: 2748–2759.

    Article  CAS  Google Scholar 

  24. Baltanas FC, Perez-Andres M, Ginel-Picardo A, Diaz D, Jimeno D, Liceras-Boillos P et al. Functional redundancy of Sos1 and Sos2 for lymphopoiesis and organismal homeostasis and survival. Mol Cell Biol 2013; 33: 4562–4578.

    Article  CAS  Google Scholar 

  25. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251–1262.

    Article  CAS  Google Scholar 

  26. Jaskelioff M, Peterson CL . Chromatin and transcription: histones continue to make their marks. Nat Cell Biol 2003; 5: 395–399.

    Article  CAS  Google Scholar 

  27. Hendzel MJ, Kruhlak MJ, Bazett-Jones DP . Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 1998; 9: 2491–2507.

    Article  CAS  Google Scholar 

  28. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . H2AX: the histone guardian of the genome. DNA Repair (Amst) 2004; 3: 959–967.

    Article  CAS  Google Scholar 

  29. Klionsky DJ, Emr SD . Autophagy as a regulated pathway of cellular degradation. Science 2000; 290: 1717–1721.

    Article  CAS  Google Scholar 

  30. Wang H, Joseph JA . Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 1999; 27: 612–616.

    Article  CAS  Google Scholar 

  31. Bindokas VP, Jordan J, Lee CC, Miller RJ . Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 1996; 16: 1324–1336.

    Article  CAS  Google Scholar 

  32. Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G, Pacher P . Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 2007; 358: 203–208.

    Article  CAS  Google Scholar 

  33. Yokosuka T, Goto H, Fujii H, Naruto T, Takeuchi M, Tanoshima R et al. Flow cytometric chemosensitivity assay using JC1, a sensor of mitochondrial transmembrane potential, in acute leukemia. Cancer Chemother Pharmacol 2013; 72: 1335–1342.

    Article  CAS  Google Scholar 

  34. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 1991; 88: 3671–3675.

    Article  CAS  Google Scholar 

  35. Cardoso CM, Moreno AJ, Almeida LM, Custodio JB . Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol In Vitro 2003; 17: 663–670.

    Article  CAS  Google Scholar 

  36. Kohli L, Kaza N, Coric T, Byer SJ, Brossier NM, Klocke BJ et al. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res 2013; 73: 4395–4405.

    Article  CAS  Google Scholar 

  37. Castilho RF, Kowaltowski AJ, Meinicke AR, Vercesi AE . Oxidative damage of mitochondria induced by Fe(II)citrate or t-butyl hydroperoxide in the presence of Ca2+: effect of coenzyme Q redox state. Free Radical Biol Med 1995; 18: 55–59.

    Article  CAS  Google Scholar 

  38. Nakayama GR, Caton MC, Nova MP, Parandoosh Z . Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 1997; 204: 205–208.

    Article  CAS  Google Scholar 

  39. Liang HL, Sedlic F, Bosnjak Z, Nilakantan V . SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery. Free Radical Biol Med 2010; 49: 1550–1560.

    Article  CAS  Google Scholar 

  40. Guittard G, Kortum RL, Balagopalan L, Cuburu N, Nguyen P, Sommers CL et al. Absence of both Sos-1 and Sos-2 in peripheral CD4 T cells leads to PI3K pathway activation and defects in migration. Eur J Immunol 2015.

  41. Huang AC, Hsu SC, Kuo CL, Liao CL, Lai KC, Lin TP et al. Involvement of matrix metalloproteinases in the inhibition of cell invasion and migration through the inhibition of NF-[kappa]B by the new synthesized ethyl 2-[N-p-chlorobenzyl-(2'-methyl)]anilino-4-oxo-4,5-dihydrofuran-3-carboxylate (JOTO1007) in human cervical cancer Ca ski cells. In Vivo 2009; 23: 613–619.

    CAS  PubMed  Google Scholar 

  42. Lv Z, Yang L . MiR-124 inhibits the growth of glioblastoma through the downregulation of SOS1. Mol Med Rep 2013; 8: 345–349.

    Article  Google Scholar 

  43. Lee EJ, Jang SI, Pallos D, Kather J, Hart TC . Characterization of fibroblasts with Son of Sevenless-1 mutation. J Dent Res 2006; 85: 1050–1055.

    Article  CAS  Google Scholar 

  44. Chen PC, Wakimoto H, Conner D, Araki T, Yuan T, Roberts A et al. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation. J Clin Invest 2010; 120: 4353–4365.

    Article  CAS  Google Scholar 

  45. Timofeeva OA, Zhang X, Ressom HW, Varghese RS, Kallakury BV, Wang K et al. Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int J Oncol 2009; 35: 751–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pierre S, Bats AS, Chevallier A, Bui LC, Ambolet-Camoit A, Garlatti M et al. Induction of the Ras activator Son of Sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochem Pharmacol 2011; 81: 304–313.

    Article  CAS  Google Scholar 

  47. Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM et al. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J 2010; 29: 1091–1104.

    Article  CAS  Google Scholar 

  48. Azrak SS, Ginel-Picardo A, Drosten M, Barbacid M, Santos E . Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications. BMC Genomics 2013; 14: 731.

    Article  CAS  Google Scholar 

  49. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J . Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. Mol Cell Biol 2006; 26: 4830–4842.

    Article  CAS  Google Scholar 

  50. Yoo S, Kim Y, Lee H, Park S, Park S . A gene trap knockout of the Tiam-1 protein results in malformation of the early embryonic brain. Mol Cells 2012; 34: 103–108.

    Article  CAS  Google Scholar 

  51. Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A . Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27: 2732–2745.

    Article  CAS  Google Scholar 

  52. Warnecke N, Poltorak M, Kowtharapu BS, Arndt B, Stone JC, Schraven B et al. TCR-mediated Erk activation does not depend on Sos and Grb2 in peripheral human T cells. EMBO Rep 2012; 13: 386–391.

    Article  CAS  Google Scholar 

  53. Park D, Pandey SK, Maksimova E, Kole S, Bernier M . Akt-dependent antiapoptotic action of insulin is sensitive to farnesyltransferase inhibitor. Biochemistry 2000; 39: 12513–12521.

    Article  CAS  Google Scholar 

  54. Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G . Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 2009; 29: 4495–4507.

    Article  CAS  Google Scholar 

  55. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399–412.

    Article  CAS  Google Scholar 

  56. Neuzil J, Rohlena J, Dong LF . K-Ras and mitochondria: dangerous liaisons. Cell Res 2012; 22: 285–287.

    Article  CAS  Google Scholar 

  57. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC . Mitochondrial glutathione, a key survival antioxidant. Antioxidants Redox Signal 2009; 11: 2685–2700.

    Article  CAS  Google Scholar 

  58. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M . N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Exp Opin Biol Ther 2008; 8: 1955–1962.

    Article  CAS  Google Scholar 

  59. Jeng HH, Taylor LJ, Bar-Sagi D . Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat Commun 2012; 3: 1168.

    Article  Google Scholar 

  60. Bellot GL, Liu D, Pervaiz S . ROS, autophagy, mitochondria and cancer: Ras, the hidden master? Mitochondrion 2013; 13: 155–162.

    Article  CAS  Google Scholar 

  61. Marino G, Martins I, Kroemer G . Autophagy in Ras-induced malignant transformation: fatal or vital? Mol Cell 2011; 42: 1–3.

    CAS  Google Scholar 

  62. Liang CC, Park AY, Guan JL . In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2: 329–333.

    Article  CAS  Google Scholar 

  63. Castellano E, Guerrero C, Nunez A, De Las Rivas J, Santos E . Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle. Genome Biol 2009; 10: R123.

    Article  Google Scholar 

  64. Martin-Encabo S, Santos E, Guerrero C . C3G mediated suppression of malignant transformation involves activation of PP2A phosphatases at the subcortical actin cytoskeleton. Exp Cell Res 2007; 313: 3881–3891.

    Article  CAS  Google Scholar 

  65. Castro-Castro A, Ojeda V, Barreira M, Sauzeau V, Navarro-Lerida I, Muriel O et al. Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO J 2011; 30: 3913–3927.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants FIS PI13/02846, RTICC RD12/0036/0001 and RD12/0036/0048 from ISCIII (MINECO) and grants SA181U13 and BIO/SA03/14 from JCyL, Spain. PL-B, RG-N and CG were supported by FEDER-JCyL, Fondo Social Europeo and AECC, respectively. Nuria Calzada is gratefully acknowledged for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F C Baltanás or E Santos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liceras-Boillos, P., García-Navas, R., Ginel-Picardo, A. et al. Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs. Oncogene 35, 6389–6402 (2016). https://doi.org/10.1038/onc.2016.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.169

This article is cited by

Search

Quick links