Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1

A Correction to this article was published on 17 November 2023

This article has been updated

Abstract

ErbB-2 amplification/overexpression accounts for an aggressive breast cancer (BC) subtype (ErbB-2-positive). Enhanced ErbB-2 expression was also found in gastric cancer (GC) and has been correlated with poor clinical outcome. The ErbB-2-targeted therapies trastuzumab (TZ), a monoclonal antibody, and lapatinib, a tyrosine kinase inhibitor, have proved highly beneficial. However, resistance to such therapies remains a major clinical challenge. We here revealed a novel mechanism underlying the antiproliferative effects of both agents in ErbB-2-positive BC and GC. TZ and lapatinib ability to block extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase (PI3K)/AKT in sensitive cells inhibits c-Myc activation, which results in upregulation of miR-16. Forced expression of miR-16 inhibited in vitro proliferation in BC and GC cells, both sensitive and resistant to TZ and lapatinib, as well as in a preclinical BC model resistant to these agents. This reveals miR-16 role as tumor suppressor in ErbB-2-positive BC and GC. Using genome-wide expression studies and miRNA target prediction algorithms, we identified cyclin J and far upstream element-binding protein 1 (FUBP1) as novel miR-16 targets, which mediate miR-16 antiproliferative effects. Supporting the clinical relevance of our results, we found that high levels of miR-16 and low or null FUBP1 expression correlate with TZ response in ErbB-2-positive primary BCs. These findings highlight a potential role of miR-16 and FUBP1 as biomarkers of sensitivity to TZ therapy. Furthermore, we revealed miR-16 as an innovative therapeutic agent for TZ- and lapatinib-resistant ErbB-2-positive BC and GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

References

  1. Arteaga CL, Engelman JA . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25: 282–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  3. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN . The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009; 14: 320–368.

    Article  CAS  PubMed  Google Scholar 

  4. Esteva FJ, Yu D, Hung MC, Hortobagyi GN . Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat Rev Clin Oncol 2010; 7: 98–107.

    Article  CAS  PubMed  Google Scholar 

  5. Yan M, Parker BA, Schwab R, Kurzrock R . HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev 2014; 40: 770–780.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Martin C, Lopez-Rios F, Aparicio J, Barriuso J, Garcia-Carbonero R, Pazo R et al. A critical review of HER2-positive gastric cancer evaluation and treatment: from trastuzumab, and beyond. Cancer Lett 2014; 351: 30–40.

    Article  CAS  PubMed  Google Scholar 

  7. Berindan-Neagoe I, Monroig PC, Pasculli B, Calin GA . MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 2014; 64: 311–336.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang W, Tong JH, Lung RW, Dong Y, Zhao J, Liang Q et al. Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma. Mol Cancer 2015; 14: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang TH, Elizalde PV . Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res 2012; 14: R77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE . Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010; 31: 2049–2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kastl L, Brown I, Schofield AC . miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 2012; 131: 445–454.

    Article  CAS  PubMed  Google Scholar 

  12. Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C . The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res 2015; 183: 196–207.

    Article  CAS  PubMed  Google Scholar 

  13. Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernandez-Hernando C, Suarez Y . MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 2011; 31: 2595–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM et al. miR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett 2013; 587: 1366–1372.

    Article  CAS  PubMed  Google Scholar 

  15. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120: 623–634.

    Article  CAS  PubMed  Google Scholar 

  16. Yu X, Zhang X, Dhakal IB, Beggs M, Kadlubar S, Luo D . Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 2012; 12: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH et al. Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat 2010; 122: 111–124.

    Article  CAS  PubMed  Google Scholar 

  18. Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci USA 2011; 108: 3761–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G et al. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Res Treat 2011; 130: 29–40.

    Article  CAS  PubMed  Google Scholar 

  20. Spector NL, Blackwell KL . Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2009; 27: 5838–5847.

    Article  CAS  PubMed  Google Scholar 

  21. O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J et al. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 2010; 9: 1489–1502.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SY, Kim HP, Kim YJ, Oh dY, Im SA, Lee D et al. Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. Int J Oncol 2008; 32: 89–95.

    PubMed  Google Scholar 

  23. Bae CD, Juhnn YS, Park JB . Post-transcriptional control of c-erb B-2 overexpression in stomach cancer cells. Exp Mol Med 2001; 33: 15–19.

    Article  CAS  PubMed  Google Scholar 

  24. Cordo Russo RI, Beguelin W, Diaz Flaque MC, Proietti C, Venturutti L, Galigniana NM et al. Targeting ErbB-2 nuclear localization and function inhibits breast cancer growth and overcomes trastuzumab resistance. Oncogene 2015; 34: 3413–3428.

    Article  CAS  PubMed  Google Scholar 

  25. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  26. Kapeli K, Hurlin PJ . Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the Ras/mitogen-activated protein kinase pathway. J Biol Chem 2011; 286: 38498–38508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Motoyama AB, Hynes NE, Lane HA . The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 2002; 62: 3151–3158.

    CAS  PubMed  Google Scholar 

  29. Koninki K, Barok M, Tanner M, Staff S, Pitkanen J, Hemmila P et al. Multiple molecular mechanisms underlying trastuzumab and lapatinib resistance in JIMT-1 breast cancer cells. Cancer Lett 2010; 294: 211–219.

    Article  PubMed  Google Scholar 

  30. Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 2012; 31: 3002–3008.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T . miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37: D105–D110.

    Article  CAS  PubMed  Google Scholar 

  32. Elzein S, Goodyer CG . Regulation of human growth hormone receptor expression by microRNAs. Mol Endocrinol 2014; 28: 1448–1459.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tagawa T, Haraguchi T, Hiramatsu H, Kobayashi K, Sakurai K, Inada K et al. Multiple microRNAs induced by Cdx1 suppress Cdx2 in human colorectal tumour cells. Biochem J 2012; 447: 449–455.

    Article  CAS  PubMed  Google Scholar 

  34. Stajduhar E, Sedic M, Lenicek T, Radulovic P, Kerenji A, Kruslin B et al. Expression of growth hormone receptor, plakoglobin and NEDD9 protein in association with tumour progression and metastasis in human breast cancer. Tumour Biol 2014; 35: 6425–6434.

    Article  CAS  PubMed  Google Scholar 

  35. Bhat-Nakshatri P, Goswami CP, Badve S, Sledge GW Jr ., Nakshatri H . Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 2013; 3: 2530.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jang M, Park BC, Kang S, Chi SW, Cho S, Chung SJ et al. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene 2009; 28: 1529–1536.

    Article  CAS  PubMed  Google Scholar 

  37. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J et al. miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PLoS One 2013; 8: e76247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Chen QM . Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2013; 32: 2907–2916.

    Article  CAS  PubMed  Google Scholar 

  39. He L, Liu J, Collins I, Sanford S, O'Connell B, Benham CJ et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J 2000; 19: 1034–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. von Ahlfen S, Missel A, Bendrat K, Schlumpberger M . Determinants of RNA quality from FFPE samples. PLoS One 2007; 2: e1261.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 2011; 6: e16915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang F, Tian Q, Wang Y . Far upstream element-binding protein 1 (FUBP1) is overexpressed in human gastric cancer tissue compared to non-cancerous tissue. Onkologie 2013; 36: 650–655.

    CAS  PubMed  Google Scholar 

  43. Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA 2011; 108: 5021–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 2007; 99: 628–638.

    Article  CAS  PubMed  Google Scholar 

  45. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 2007; 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  46. Belkhiri A, Dar AA, Peng DF, Razvi MH, Rinehart C, Arteaga CL et al. Expression of t-DARPP mediates trastuzumab resistance in breast cancer cells. Clin Cancer Res 2008; 14: 4564–4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao E, Zhou W, Lee-Hoeflich ST, Truong T, Haverty PM, Eastham-Anderson J et al. Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin Cancer Res 2009; 15: 4147–4156.

    Article  CAS  PubMed  Google Scholar 

  48. Gayle SS, Castellino RC, Buss MC, Nahta R . MEK inhibition increases lapatinib sensitivity via modulation of FOXM1. Curr Med Chem 2013; 20: 2486–2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee YY, Kim HP, Kang MJ, Cho BK, Han SW, Kim TY et al. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med 2013; 45: e64.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xiang B, Chatti K, Qiu H, Lakshmi B, Krasnitz A, Hicks J et al. Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc Natl Acad Sci USA 2008; 105: 12463–12468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 2010; 70: 299–308.

    Article  CAS  PubMed  Google Scholar 

  52. Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med 2010; 2: 16ra7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang SE, Lin RJ . MicroRNA and HER2-overexpressing cancer. Microrna 2013; 2: 137–147.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kang HS, Kim J, Jang SG, Kwon SY, Park YS, Green JE et al. MicroRNA signature for HER2-positive breast and gastric cancer. Anticancer Res 2014; 34: 3807–3810.

    PubMed  Google Scholar 

  55. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 2011; 141: 2076–2087.

    Article  CAS  PubMed  Google Scholar 

  56. Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK . Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-alpha in breast cancer. Cancer Res 2013; 73: 2884–2896.

    Article  CAS  PubMed  Google Scholar 

  57. Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 2009; 284: 18515–18524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Venturutti L, Romero LV, Urtreger AJ, Chervo MF, Cordo Russo RI, Mercogliano MF et al. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene 2015.

  59. Dai L, Wang W, Zhang S, Jiang Q, Wang R, Dai L et al. Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int 2012; 36: 765–770.

    Article  CAS  PubMed  Google Scholar 

  60. Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 2009; 69: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 2009; 69: 5553–5559.

    Article  CAS  PubMed  Google Scholar 

  62. Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, Giamas G et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 2012; 7: e32068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang TQ, Lu XJ, Wu TF, Ding DD, Zhao ZH, Chen GL et al. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Sci 2014; 105: 265–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang QQ, Liu B, Yuan T . MicroRNA-16 inhibits bladder cancer proliferation by targeting cyclin D1. Asian Pac J Cancer Prev 2013; 14: 4127–4130.

    Article  PubMed  Google Scholar 

  65. Agra AN, Motino O, Mayoral R, Llorente IC, Fernandez-Alvarez A, Bosca L et al. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells. PLoS One 2012; 7: e50935.

    Article  Google Scholar 

  66. Le XF, Almeida MI, Mao W, Spizzo R, Rossi S, Nicoloso MS et al. Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One 2012; 7: e41170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One 2012; 7: e31422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 2011; 17: 2725–2733.

    Article  CAS  PubMed  Google Scholar 

  69. Xu J, Chen Y, Olopade OI . MYC and breast cancer. Genes Cancer 2010; 1: 629–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collins DC, Cocchiglia S, Tibbitts P, Solon G, Bane FT, McBryan J et al. Growth factor receptor/steroid receptor cross talk in trastuzumab-treated breast cancer. Oncogene 2015; 34: 525–530.

    Article  CAS  PubMed  Google Scholar 

  71. Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28: 438–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y et al. A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFkappaB and STAT3 in colorectal cancer cells. Gastroenterology 2014; 147: 847–859.

    Article  CAS  PubMed  Google Scholar 

  73. Chen L, Min L, Wang X, Zhao J, Chen H, Qin J et al. Loss of RACK1 promotes metastasis of gastric cancer by inducing a miR-302c/IL8 signaling loop. Cancer Res 2015; 75: 3832–3841.

    Article  CAS  PubMed  Google Scholar 

  74. Schneeweiss A, Chia S, Hegg R, Tausch C, Deb R, Ratnayake J et al. Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the TRYPHAENA study. Breast Cancer Res 2014; 16: R73.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kao SC, Fulham M, Wong K, Cooper W, Brahmbhatt H, MacDiarmid J et al. A significant metabolic and radiological response after a novel targeted microRNA-based treatment approach in malignant pleural mesothelioma. Am J Respir Crit Care Med 2015; 191: 1467–1469.

    Article  PubMed  Google Scholar 

  76. Edgar R, Domrachev M, Lash AE . Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank AA Molinolo (UCSD, San Diego, CA, USA) for his constant help. This work was supported by KG090250 investigator-initiated research grant from Susan G Komen for the Cure, Financial Assistance for National Research Projects from the National Institute of Cancer (INC, Argentina), IDB/PICT 2012-668 and PID 2012-066 from National Agency of Scientific Promotion of Argentina (ANPCyT), awarded to PVE; IDB/PICT 2012-382 from ANPCyT, awarded to RS; Oncomed-Reno CONICET 1819/03, from Henry Moore Institute of Argentina, awarded to PVE and RS; IDB/PICT 2008-189 and 2012-1017 from ANPCyT, PIP 59 from CONICET, awarded to CJP.

Author contributions

LV, MAR, RS and PVE were responsible for the conception and design of the study. LV, RICR, MFM, RS and PVE developed methodology. LV, RICR, MAR, MFM, FI, RHO, MGP, MDM, CJP, JCR, PG, EC, DHA, TH-MH, EHC, JAC, RS and PVE acquired the data (and also provided animals, acquired and managed patients, provided facilities, and so on). LV, RICR, MAR, PY, RS and PVE analyzed and interpreted the data. LV and PVE wrote the manuscript. PVE supervised the study. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P V Elizalde.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturutti, L., Cordo Russo, R., Rivas, M. et al. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene 35, 6189–6202 (2016). https://doi.org/10.1038/onc.2016.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.151

This article is cited by

Search

Quick links