Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXO1 is a TXN- and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism

Abstract

Molecular profiling has led to identification of subtypes of diffuse large B-cell lymphomas (DLBCLs) differing in terms of oncogenic signaling and metabolic programs. The OxPhos-DLBCL subtype is characterized by enhanced mitochondrial oxidative phosphorylation. As increased oxidative metabolism leads to overproduction of potentially toxic reactive oxygen species (ROS), we sought to identify mechanisms responsible for adaptation of OxPhos cells to these conditions. Herein, we describe a mechanism involving the FOXO1–TXN–p300 redox-dependent circuit protecting OxPhos-DLBCL cells from ROS toxicity. We identify a BCL6-dependent transcriptional mechanism leading to relative TXN overexpression in OxPhos cells. We found that OxPhos cells lacking TXN were uniformly more sensitive to ROS and doxorubicin than control cells. Consistent with this, the overall survival of patients with high TXN mRNA expression, treated with doxorubicin-containing regimens, is significantly shorter than of those with low TXN mRNA expression. TXN overexpression curtails p300-mediated FOXO1 acetylation and its nuclear translocation in response to oxidative stress, thus attenuating FOXO1 transcriptional activity toward genes involved in apoptosis and cell cycle inhibition. We also demonstrate that FOXO1 knockdown in cells with silenced TXN expression markedly reduces ROS-induced apoptosis, indicating that FOXO1 is the major sensor and effector of oxidative stress in OxPhos-DLBCLs. These data highlight dynamic, context-dependent modulation of FOXO1 tumor-suppressor functions via acetylation and reveal potentially targetable vulnerabilities in these DLBCLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Myatt SS, Lam EW . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    Article  CAS  Google Scholar 

  2. Storz P . Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 2011; 14: 593–605.

    Article  CAS  Google Scholar 

  3. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309–323.

    Article  CAS  Google Scholar 

  4. Huang H, Tindall DJ . Dynamic FoxO transcription factors. J Cell Sci 2007; 120: 2479–2487.

    Article  CAS  Google Scholar 

  5. Szydłowski M, Jabłońska E, Juszczyński P . FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development. Int Rev Immunol 2014; 33: 146–157.

    Article  Google Scholar 

  6. Trinh DL, Scott DW, Morin RD, Mendez-Lago M, An J, Jones SJ et al. Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. Blood 2013; 121: 3666–3674.

    Article  CAS  Google Scholar 

  7. Xie L, Ushmorov A, Leithäuser F, Guan H, Steidl C, Färbinger J et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 2012; 119: 3503–3511.

    Article  CAS  Google Scholar 

  8. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005; 105: 1851–1861.

    Article  CAS  Google Scholar 

  9. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  Google Scholar 

  10. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012; 22: 547–560.

    Article  CAS  Google Scholar 

  11. Balaban RS, Nemoto S, Finkel T . Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495.

    Article  CAS  Google Scholar 

  12. Marinho HS, Real C, Cyrne L, Soares H, Antunes F . Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2: 535–562.

    Article  CAS  Google Scholar 

  13. Eijkelenboom A, Burgering BM . FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 2013; 14: 83–97.

    Article  CAS  Google Scholar 

  14. Dansen TB, Smits LM, van Triest MH, de Keizer PL, van Leenen D, Koerkamp MG et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 2009; 5: 664–672.

    Article  CAS  Google Scholar 

  15. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 1999; 274: 27891–27897.

    Article  CAS  Google Scholar 

  16. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  Google Scholar 

  17. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  Google Scholar 

  18. Polo JM, Juszczynski P, Monti S, Cerchietti L, Ye K, Greally JM et al. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2007; 104: 3207–3212.

    Article  CAS  Google Scholar 

  19. Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L, Yang SN et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 2009; 113: 5536–5548.

    Article  CAS  Google Scholar 

  20. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    Article  CAS  Google Scholar 

  21. Barbouti A, Doulias PT, Nousis L, Tenopoulou M, Galaris D . DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: bolus addition versus continuous generation of H(2)O(2). Free Radic Biol Med 2002; 33: 691–702.

    Article  CAS  Google Scholar 

  22. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. GammaH2AX and cancer. Nat Rev Cancer 2008; 8: 957–967.

    Article  CAS  Google Scholar 

  23. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B . Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 2004; 279: 25535–25543.

    Article  CAS  Google Scholar 

  24. Powis G, Montfort WR . Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 2001; 41: 261–295.

    Article  CAS  Google Scholar 

  25. Liu Y, Min W . Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 2002; 90: 1259–1266.

    Article  CAS  Google Scholar 

  26. Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 2004; 101: 10042–10047.

    Article  CAS  Google Scholar 

  27. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  28. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006; 125: 987–1001.

    Article  CAS  Google Scholar 

  29. Yuan Z, Lehtinen MK, Merlo P, Villen J, Gygi S, Bonni A . Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem 2009; 284: 11285–11292.

    Article  CAS  Google Scholar 

  30. Rhee SG . Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999; 31: 53–59.

    Article  CAS  Google Scholar 

  31. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O . Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5: 9–19.

    Article  CAS  Google Scholar 

  32. An N, Kang Y Chapter Seven - Thioredoxin and hematologic malignancies. In: Danyelle MT, Kenneth DT (eds) Advances in Cancer Research Volume 122. Academic Press, 2014, pp 245–279.

    Google Scholar 

  33. Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, Yodoi J . Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem 2001; 276: 18399–18406.

    Article  CAS  Google Scholar 

  34. Li C, Thompson MA, Tamayo AT, Zuo Z, Lee J, Vega F et al. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 2012; 3: 314–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17: 2596–2606.

    Article  CAS  Google Scholar 

  36. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275: 90–94.

    Article  CAS  Google Scholar 

  37. Brent MM, Anand R, Marmorstein R . Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 2008; 16: 1407–1416.

    Article  CAS  Google Scholar 

  38. Giannakou ME, Partridge L . The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 2004; 14: 408–412.

    Article  CAS  Google Scholar 

  39. Szydlowski M, Kiliszek P, Sewastianik T, Jablonska E, Bialopiotrowicz E, Gorniak P et al. FOXO1 activation is an effector of SYK and AKT inhibition in tonic BCR signal-dependent diffuse large B-cell lymphomas. Blood 2015; 127: 739–748.

    Article  Google Scholar 

  40. Calnan DR, Brunet A . The FoxO code. Oncogene 2008; 27: 2276–2288.

    Article  CAS  Google Scholar 

  41. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471: 189–195.

    Article  CAS  Google Scholar 

  42. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002; 99: 11700–11705.

    Article  CAS  Google Scholar 

  43. Yang Y, Zhao Y, Liao W, Yang J, Wu L, Zheng Z et al. Acetylation of FoxO1 activates Bim expression to induce apoptosis in response to histone deacetylase inhibitor depsipeptide treatment. Neoplasia 2009; 11: 313–324.

    Article  CAS  Google Scholar 

  44. Kiebala M, Skalska J, Casulo C, Brookes PS, Peterson DR, Hilchey SP et al. Dual targeting of the thioredoxin and glutathione anti-oxidant systems in malignant B-cells; a novel synergistic therapeutic approach. Exp Hematol 2014; 43: 89–99.

    Article  Google Scholar 

  45. Mandal PK, Schneider M, Kolle P, Kuhlencordt P, Forster H, Beck H et al. Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res 2010; 70: 9505–9514.

    Article  CAS  Google Scholar 

  46. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  47. Juszczynski P, Chen L, O'Donnell E, Polo JM, Ranuncolo SM, Dalla-Favera R et al. BCL6 modulates tonic BCR signaling in diffuse large B-cell lymphomas by repressing the SYK phosphatase, PTPROt. Blood 2009; 114: 5315–5321.

    Article  CAS  Google Scholar 

  48. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  49. Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23: 826–838.

    Article  CAS  Google Scholar 

  50. Tang ED, Nunez G, Barr FG, Guan KL . Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–16746.

    Article  CAS  Google Scholar 

  51. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr., DiStefano PS et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296: 530–534.

    Article  CAS  Google Scholar 

  52. Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RC, Shipp MA . BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 2006; 26: 5348–5359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work and T.S. PhD scholarship are supported by a Foundation for Polish Science grant TEAM/2011-7/4, co-financed by the European Regional Development Fund and Operational Program Innovative Economy 2007-2013. This work was partly performed in the laboratories founded by NanoFun POIG.02.02.00-00-025/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Juszczynski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sewastianik, T., Szydlowski, M., Jablonska, E. et al. FOXO1 is a TXN- and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism. Oncogene 35, 5989–6000 (2016). https://doi.org/10.1038/onc.2016.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.126

This article is cited by

Search

Quick links