Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential

Abstract

The Ras-related (R-Ras) isoforms TC21, R-Ras and M-Ras are members of the Ras superfamily of small GTPases. R-Ras family proteins are frequently overexpressed in human cancers, and expression of activated mutants of these GTPases is sufficient to induce cell transformation. Unlike Ras, few activating mutations of R-Ras proteins have been reported in human cancer, and very little is known about the regulation of their activity. In this study, we report that TC21 and R-Ras are phosphorylated on a conserved serine, Ser186 and Ser201, respectively, in intact cells. This residue is located in the C-terminal hypervariable region of the proteins and is not conserved in M-Ras. We show that the MAP kinases ERK1/2 phosphorylate TC21 and R-Ras on this C-terminal serine residue both in vitro and in vivo. Phosphorylation of R-Ras proteins does not affect their subcellular localization or stability but rather stimulates their activation. Phosphorylation-defective mutants of R-Ras and TC21 are compromised in their ability to promote cancer cell adhesion and migration/invasion, respectively. Importantly, we show that phosphorylation of TC21 and R-Ras potentiates their tumorigenic activity in immunodeficient mice. Our results identify a novel regulatory mechanism of the small GTPases TC21 and R-Ras that controls their oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW . Ras and relatives—job sharing and networking keep an old family together. Exp Hematol 2002; 30: 1089–1106.

    Article  CAS  PubMed  Google Scholar 

  2. Wennerberg K, Rossman KL, Der CJ . The Ras superfamily at a glance. J Cell Sci 2005; 118: 843–846.

    Article  CAS  PubMed  Google Scholar 

  3. Sawada J, Urakami T, Li F, Urakami A, Zhu W, Fukuda M et al. Small GTPase R-Ras regulates integrity and functionality of tumor blood vessels. Cancer Cell 2012; 22: 235–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clark GJ, Kinch MS, Gilmer TM, Burridge K, Der CJ . Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 1996; 12: 169–176.

    CAS  PubMed  Google Scholar 

  5. Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H et al. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 2005; 65: 2115–2124.

    Article  CAS  PubMed  Google Scholar 

  6. Castro AF, Campos T, Babcock JT, Armijo ME, Martinez-Conde A, Pincheira R et al. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells. J Cell Biochem 2012; 113: 1253–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Larive RM, Moriggi G, Menacho-Marquez M, Canamero M, de Alava E, Alarcon B et al. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat Commun 2014; 5: 3881.

    Article  CAS  PubMed  Google Scholar 

  8. Guo X, Stratton L, Schrader JW . Expression of activated M-Ras in hemopoietic stem cells initiates leukemogenic transformation, immortalization and preferential generation of mast cells. Oncogene 2006; 25: 4241–4244.

    Article  CAS  PubMed  Google Scholar 

  9. Quilliam LA, Castro AF, Rogers-Graham KS, Martin CB, Der CJ, Bi C . M-Ras/R-Ras3, a transforming ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J Biol Chem 1999; 274: 23850–23857.

    Article  CAS  PubMed  Google Scholar 

  10. Louahed J, Grasso L, De Smet C, Van Roost E, Wildmann C, Nicolaides NC et al. Interleukin-9-induced expression of M-Ras/R-Ras3 oncogene in T-helper clones. Blood 1999; 94: 1701–1710.

    CAS  PubMed  Google Scholar 

  11. Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S et al. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 1999; 18: 2107–2116.

    Article  CAS  PubMed  Google Scholar 

  12. Cox AD, Brtva TR, Lowe DG, Der CJ . R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 1994; 9: 3281–3288.

    CAS  PubMed  Google Scholar 

  13. Lee JH, Pyon JK, Lee SH, Lee YJ, Kang SG, Kim CH et al. Greater expression of TC21/R-ras2 in highly aggressive malignant skin cancer. Int J Dermatol 2011; 50: 956–960.

    Article  CAS  PubMed  Google Scholar 

  14. Macha MA, Matta A, Sriram U, Thakkar A, Shukla NK, Datta Gupta S et al. Clinical significance of TC21 overexpression in oral cancer. J Oral Pathol Med 2010; 39: 477–485.

    Article  CAS  PubMed  Google Scholar 

  15. Luo H, Hao X, Ge C, Zhao F, Zhu M, Chen T et al. TC21 promotes cell motility and metastasis by regulating the expression of E-cadherin and N-cadherin in hepatocellular carcinoma. Int J Oncol 2010; 37: 853–859.

    CAS  PubMed  Google Scholar 

  16. Arora S, Matta A, Shukla NK, Deo SV, Ralhan R . Identification of differentially expressed genes in oral squamous cell carcinoma. Mol Carcinog 2005; 42: 97–108.

    Article  CAS  PubMed  Google Scholar 

  17. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delgado P, Cubelos B, Calleja E, Martinez-Martin N, Cipres A, MeridaI et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 2009; 10: 880–888.

    Article  CAS  PubMed  Google Scholar 

  19. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR . Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 2012; 13: 39–51.

    Article  CAS  Google Scholar 

  20. Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 2006; 21: 481–493.

    Article  CAS  PubMed  Google Scholar 

  21. Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R et al. Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci USA 2012; 109: 10843–10848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud E et al. Ubiquitination of Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 2011; 4: 1–9.

    Article  Google Scholar 

  23. Williams JG, Pappu K, Campbell SL . Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci USA 2003; 100: 6376–6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barceló C, Paco N, Morell M, Alvarez-Moya B, Bota-Rabassedas N, Jaumot M et al. Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth. Cancer Res 2014; 74: 1190–1199.

    Article  PubMed  Google Scholar 

  25. Courcelles M, Fremin C, Voisin L, Lemieux S, Meloche S, Thibault P . Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol 2013; 9: 669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hancock JF, Paterson H, Marshall CJ . A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63: 133–139.

    Article  CAS  PubMed  Google Scholar 

  27. Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S, Santambrogio M et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22: 1479–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lowe DG, Goeddel DV . Heterologous expression and characterization of the human R-ras gene product. Mol Cell Biol 1987; 7: 2845–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sung PJ, Tsai FD, Vais H, Court H, Yang J, Fehrenbacher N et al. Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 2013; 110: 20593–20598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heo J, Campbell SL . Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange. Biochemistry 2004; 43: 2314–2322.

    Article  CAS  PubMed  Google Scholar 

  31. Grosstessner-Hain K, Hegemann B, Novatchkova M, Rameseder J, Joughin BA, Hudecz O et al. Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 2011; 10: 008540.

    Article  PubMed  Google Scholar 

  32. Kim JY, Welsh EA, Oguz U, Fang B, Bai Y, Kinose F et al. Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci USA 2013; 110: 12414–12419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stockli J, Yang JY et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 2013; 17: 1009–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013; 339: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  35. Fremin C, Meloche S . From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010; 3: 8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B Alarcón (CBMSO, Madrid) for pGex-4T3-TC21 and pEGFP-TC21 plasmids. CF is a recipient of fellowships from the Cole Foundation, the Association pour la Recherche contre le Cancer (ARC) and the Fonds de la recherche en santé du Québec (FRSQ). JPG is a recipient of fellowships from the Fondation pour la Recherche Médicale (FRM), the Cole Foundation and the Fonds de la recherche en santé du Québec (FRSQ). SM and GE hold the Canada Research Chairs in Cellular Signaling and Vesicle Transport and Cell Signaling, respectively. This work was supported by grants from the Canadian Institutes of Health Research to SM and GE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Meloche.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frémin, C., Guégan, JP., Plutoni, C. et al. ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential. Oncogene 35, 5692–5698 (2016). https://doi.org/10.1038/onc.2016.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.122

This article is cited by

Search

Quick links