Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis

Subjects

Abstract

Although the skeleton is one of the predominant sites for breast cancer metastasis, why breast cancer cells often become dormant after homing to bone is not well understood. Here, we reported an intrinsic self-defense mechanism of bone cells against breast cancer cells: a critical role of connexin (Cx) 43 hemichannels in osteocytes in the suppression of breast cancer bone metastasis. Cx43 hemichannels allow passage of small molecules between the intracellular and extracellular environments. The treatment of bisphosphonate drugs, either alendronate (ALN) or zoledronic acid (ZOL), opened Cx43 hemichannels in osteocytes. Conditioned media (CM) collected from MLO-Y4 osteocyte cells treated with bisphosphonates inhibited the anchorage-independent growth, migration and invasion of MDA-MB-231 human breast cancer cells and Py8119 mouse mammary carcinoma cells, and this inhibitory effect was attenuated with Cx43(E2), a specific hemichannel-blocking antibody. The opening of osteocytic Cx43 hemichannels by mechanical stimulation had similar inhibitory effects on breast cancer cells and this inhibition was attenuated by Cx43(E2) antibody as well. These inhibitory effects on cancer cells were mediated by ATP released from osteocyte Cx43 hemichannels. Furthermore, both Cx43 osteocyte-specific knockout mice and osteocyte-specific Δ130-136 transgenic mice with impaired Cx43 gap junctions and hemichannels showed significantly increased tumor growth and attenuated the inhibitory effect of ZOL. However, R76W transgenic mice with functional hemichannels but not gap junctions in osteocytes did not display a significant difference. Together, our studies establish the specific inhibitory role of osteocytic Cx43 hemichannels, and exploiting the activity of this channel could serve as a de novo therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Welch DR, Harms JF, Mastro AM, Gay CV, Donahue HJ . Breast cancer metastasis to bone: evolving models and research challenges. J Musculoskelet Neuronal Interact 2003; 3: 30–38.

    CAS  PubMed  Google Scholar 

  2. Roodman GD . Mechanism of bone metastasis. N Engl J Med 2004; 350: 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  3. van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C . Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resporption stimulators by breast cancer in bone metastases. J Bone Miner Res 2001; 16: 1077–1091.

    Article  CAS  PubMed  Google Scholar 

  4. Theriault RL, Theriault RL . Biology of bone metastases. Cancer Control 2012; 19: 92–101.

    Article  PubMed  Google Scholar 

  5. Place AE, Jin HS, Polyak K . The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 2011; 13: 227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonewald LF . Osteocytes as dynamic multifucntional cells. Ann NY Acad Sci 2007; 1116: 281–290.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuo K . Cross-talk among bone cells. Curr Opin Nephrol Hypertens 2009; 18: 292–297.

    Article  CAS  PubMed  Google Scholar 

  8. Goodenough DA, Goliger JA, Paul DL . Connexins, connexons, and intercellular communication. Annu Rev Biochem 1996; 65: 475–502.

    Article  CAS  PubMed  Google Scholar 

  9. Goodenough DA, Paul DL . Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003; 4: 285–294.

    Article  CAS  PubMed  Google Scholar 

  10. Evans WH, de Vuyst E, Leybaert L . The gap junction cellular internet: connexin hemichannels enter the signaling limelight. Biochem J 2006; 397: 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC . Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83: 1359–1400.

    Article  CAS  PubMed  Google Scholar 

  12. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005; 16: 3100–3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ . Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007; 212: 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 2008; 283: 26374–26382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plotkin LI, Manolagas SC, Bellido T . Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 2002; 277: 8648–8657.

    Article  CAS  PubMed  Google Scholar 

  16. Brown SA, Guise TA . Cancer-associated bone disease. Curr Osteoporos Rep 2007; 5: 120–127.

    Article  PubMed  Google Scholar 

  17. Mesnil M . Connexins and cancer. Biol Cell 2002; 94: 493–500.

    Article  CAS  PubMed  Google Scholar 

  18. Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML . Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 2005; 1719: 125–145.

    Article  CAS  PubMed  Google Scholar 

  19. Cronier L, Crespin S, Strale P-O, Defamie N, Mesnil M . Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 2009; 11: 323–328.

    Article  CAS  PubMed  Google Scholar 

  20. Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos G et al. Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 1999; 59: 4104–4110.

    CAS  PubMed  Google Scholar 

  21. Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB . Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 2008; 6: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci 2013; 126: 904–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, Mackowiak II, Mori CM, da Silva TC et al. Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 2004; 25: 1973–1982.

    Article  CAS  PubMed  Google Scholar 

  24. Plante I, Stewart MKG, Barr K, Allan AL, Laird DW . Cx43 suppresses mammary tumor metastasis to the lung in a Cx43-mutant mouse model of human disease. Oncogene 2011; 30: 1681–1692.

    Article  CAS  PubMed  Google Scholar 

  25. Plotkin LI, Bellido T . Bisphophonate-induced, hemichannel-mediated anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Commun Adhes 2001; 2001: 377–382.

    Article  Google Scholar 

  26. Riquelme MA, Kar R, Gu S, Jiang JX . Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology 2013; 75: 525–532.

    Article  CAS  PubMed  Google Scholar 

  27. Savariar EN, Felsen CN, Nashi N, Jiang T, Ellies LG, Steinbach P et al. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Res 2013; 73: 855–864.

    Article  CAS  PubMed  Google Scholar 

  28. Kato Y, Boskey A, Spevak L, Dallas M., Hori M, Bonewald LF . Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralized in culture. J Bone Miner Res 2001; 16: 1622–1633.

    Article  CAS  PubMed  Google Scholar 

  29. Cherian PP, Xia X, Jiang JX . Role of gap junction, hemichannels, and connexin 43 in mineralizing in response to intermittent and continuous application of parathyroid hormone. Cell Commun Adhes 2008; 15: 43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohno N . Treatment of breast cancer with bone metastasis: bisphosphonate treatment—current and future. Int J Clin Oncol 2008; 13: 18–23.

    Article  CAS  PubMed  Google Scholar 

  31. Russell RG . Bisphosphonates: the first 40 years. Bone 2011; 49: 2–19.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX . Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 2015; 34: 1831–1842.

    Article  CAS  PubMed  Google Scholar 

  33. Aarden EM, Burger EH, Nijweide PJ . Function of osteocytes in bone. J Cell Biochem 1994; 55: 287–299.

    Article  CAS  PubMed  Google Scholar 

  34. Klein-nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S . Mechanosensation and transduction in osteocytes. Bone 2013; 54: 182–190.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang JX, Siller-Jackson AJ, Burra S . Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci 2007; 12: 1450–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX . Expression of functional gap junctions and regulation by fluid flow shear stress in osteocyte-like MLO-Y4 cells. J Bone Miner Res 2001; 16: 249–259.

    Article  CAS  PubMed  Google Scholar 

  37. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 2012; 27: 374–389.

    Article  CAS  PubMed  Google Scholar 

  38. Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 2015; 30: 436–448.

    Article  PubMed  Google Scholar 

  39. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    Article  CAS  PubMed  Google Scholar 

  40. Liotta LA, Kohn EC . The microenvironment of the tumour-host interface. Nature 2001; 411: 375–379.

    Article  CAS  PubMed  Google Scholar 

  41. Paget S . The distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571–573.

    Article  Google Scholar 

  42. Bonewald LF . The amazing osteocyte. J Bone Miner Res 2011; 26: 229–238.

    Article  CAS  PubMed  Google Scholar 

  43. Bennett MV, Garre JM, Orellana JA, Bukauskas FF, Nedergaard M, Saez JC . Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 2012; 1487: 3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calder BW, Matthew RJ, Bainbridge H, Fann SA, Gourdie RG, Yost MJ . Inhibition of connexin 43 hemichannel-mediated ATP release attenuates early inflammation during the foreign body response. Tissue Eng Part A 2015; 21: 1752–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stains JP, Civitelli R . Gap junctions in skeletal development and function. Biochim Biophys Acta 2005; 1719: 69–81.

    Article  CAS  PubMed  Google Scholar 

  46. Laird DW . Life cycle of connexins in health and disease. Biochem J 2006; 394: 527–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL et al. Low peak bone mass and attenuated response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci 2006; 119: 4187–4198.

    Article  CAS  PubMed  Google Scholar 

  48. Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res 2013; 31: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 2011; 6: e23516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loiselle AE, Paul EM, Lewis GS, Donahue HJ . Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 2013; 31: 147–154.

    Article  CAS  PubMed  Google Scholar 

  51. Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Sáez PJ et al. Amyloid β-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 2011; 31: 4962–4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC et al. ATP and glutamate released via astroglial connexin 43hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 2011; 118: 826–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orellana JA, Sáez PJ, Cortés-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S et al. Glucose increase intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 2012; 60: 53–68.

    Article  PubMed  Google Scholar 

  54. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF . Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 1997; 12: 2014–2023.

    Article  CAS  PubMed  Google Scholar 

  55. Shabbir M, Burnstock G . Purinergic receptor-mediated effects of adenosine 5'-triphosphate in urological malignant diseases. Int J Urol 2009; 16: 143–150.

    Article  CAS  PubMed  Google Scholar 

  56. White N, Burnstock G . P2 receptors and cancer. Trends Pharmacol Sci 2006; 27: 211–217.

    Article  CAS  PubMed  Google Scholar 

  57. Rapaport E, Fishman RF, Gercel C . Growth inhibition of human tumor cells in soft-agar cultures by treatment with low levels of adenosine 5'-triphosphate. Cancer Res 1983; 43: 4402–4406.

    CAS  PubMed  Google Scholar 

  58. Saez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MVL . Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 2003; 179: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Plotkin LI . Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol 2014; 5: 131.

    Article  PubMed  PubMed Central  Google Scholar 

  60. D'hondt C, Iyyathurai J, Himpens B, Leybaert L, Bultynck G . Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond. Front Physiol 2014; 5: 348.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sterling JA, Guelcher SA . Bone structural components regulating sites of tumor metastasis. Curr Osteoporos Rep 2011; 9: 89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Milne HM, Wallman KE, Gordon S, Courneya KS . Effects of a combined aerobic and resistance exercise program in breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat 2008; 108: 279–288.

    Article  PubMed  Google Scholar 

  63. Schwartz AL, Winters-Stone K, Gallucci B . Exercise effects on bone mineral density in women with breast cancer receiving adjuvant chemotherapy. Oncol Nurs Forum 2007; 34: 627–633.

    Article  PubMed  Google Scholar 

  64. Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ et al. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 2008; 17: 379–386.

    Article  PubMed  Google Scholar 

  65. Irwin ML, McTiernan A, Manson JE, Thomson CA, Sternfeld B, Stefanick ML et al. Physical activity and survival in postmenopausal women with breast cancer: results from the women's health initiative. Cancer Prev Res (Phila) 2011; 4: 522–529.

    Article  Google Scholar 

  66. Lynch ME, Brooks D, Mohanan S, Lee MJ, Polamraju P, Dent K et al. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model. J Bone Miner Res 2013; 28: 2357–2367.

    Article  PubMed  Google Scholar 

  67. Kretschmann KL, Welm AL . Mouse models of breast cancer metastasis to bone. Cancer Metastasis Rev 2012; 31: 579–583.

    Article  PubMed  Google Scholar 

  68. Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 2014; 30: 436–448.

    Article  Google Scholar 

  69. Dbouk HA, Mroue RM, El Sabban ME, Talhouk RS . Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009; 7: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou JZ, Jiang JX . Gap junction and hemichannel-independent actions of connexins on cell and tissue functions—an update. FEBS Lett 2014; 588: 1186–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang W, Tan S, Paintsil E, Dutschman GE, Gullen EA, Chu E et al. Analysis of deoxyribonucleotide pools in human cancer cell lines using a liquid chromatography coupled with tandem mass spectrometry technique. Biochem Pharmacol 2011; 82: 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Theis M, de Wit C, Schlaeger TM, Eckardt D, Krüger O, Döring B et al. Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 2001; 29: 1–13.

    Article  CAS  PubMed  Google Scholar 

  73. Yang W, Kalajzic I, Lu Y, Guo D, Harris MA, Gluhak-Heinrich J et al. Identification of an osteocyte-specific mechanically regulated region of the dentin matrix protein 1 gene. J Biol Chem 2005; 280: 20680–20690.

    Article  CAS  PubMed  Google Scholar 

  74. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98: 1544–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hongyun Cheng for technical assistance, Dr Lesley Ellies at the University of California at San Diego for providing Py8119 cells, Dr Lynda Bonewald at the University of Missouri at Kansas City for MLO-Y4 osteocytic cells, Dr Stephen Harris at UTHSCSA for 10-kb dentin matrix protein 1 (DMP1)-Cre mice and Dr Klaus Willecke at the University of Bonn and Dr Roberto Civitelli for mice with floxed Cx43 gene. The work was supported by Welch Foundation grant AQ-1507 and NIH grant EY012085 to JXJ, ES022057 to LZS and the NCI Cancer Center grant 2 P30 CA054174-17 to Cancer Therapy and Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J X Jiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Riquelme, M., Gu, S. et al. Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene 35, 5597–5607 (2016). https://doi.org/10.1038/onc.2016.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.101

This article is cited by

Search

Quick links