Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenomic regulation of oncogenesis by chromatin remodeling

Abstract

Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein–protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Dawson MA, Kouzarides T . Cancer epigenetics: from mechanism to therapy. Cell 2012; 150: 12–27.

    CAS  PubMed  Google Scholar 

  2. Iacobuzio-Donahue CA . Epigenetic changes in cancer. Annu Rev Pathol 2009; 4: 229–249.

    CAS  PubMed  Google Scholar 

  3. Luo RX, Dean DC . Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst 1999; 91: 1288–1294.

    CAS  PubMed  Google Scholar 

  4. Petty E, Pillus L . Balancing chromatin remodeling and histone modifications in transcription. Trends Genet 2013; 29: 621–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bao Y, Shen X . SnapShot: chromatin remodeling complexes. Cell 2007; 129: 632.

    CAS  PubMed  Google Scholar 

  6. Clapier CR, Cairns BR . The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78: 273–304.

    CAS  PubMed  Google Scholar 

  7. Kasten MM, Clapier CR, Cairns BR . SnapShot: Chromatin remodeling: SWI/SNF. Cell 2011; 144: e311.

    Google Scholar 

  8. Yadon AN, Tsukiyama T . SnapShot: Chromatin remodeling: ISWI. Cell 2011; 144: 453–453.e1.

    PubMed  Google Scholar 

  9. Lai AY, Wade PA . Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 2011; 11: 588–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bao Y, Shen X . SnapShot: Chromatin remodeling: INO80 and SWR1. Cell 2011; 144: 158–158 e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hargreaves DC, Crabtree GR . ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21: 396–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu C, Thompson CB . Metabolic regulation of epigenetics. Cell Metab 2012; 16: 9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson DG, Dent SY . Chromatin: receiver and quarterback for cellular signals. Cell 2013; 152: 685–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunn KL, Espino PS, Drobic B, He S, Davie JR . The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 2005; 83: 1–14.

    CAS  PubMed  Google Scholar 

  15. Turjanski AG, Vaque JP, Gutkind JS . MAP kinases and the control of nuclear events. Oncogene 2007; 26: 3240–3253.

    CAS  PubMed  Google Scholar 

  16. Helming KC, Wang X, Roberts CW . Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 2014; 26: 309–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O . SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 2015; 10: 145–171.

    CAS  PubMed  Google Scholar 

  18. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013; 45: 592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT et al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 2010; 70: 2538–2547.

    CAS  PubMed  Google Scholar 

  20. Cote J, Peterson CL, Workman JL . Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA 1998; 95: 4947–4952.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Euskirchen G, Auerbach RK, Snyder M . SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 2012; 287: 30897–30905.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kapoor P, Bao Y, Xiao J, Luo J, Shen J, Persinger J et al. Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex. Genes Dev 2015; 29: 591–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsukiyama T, Daniel C, Tamkun J, Wu C . ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 1995; 83: 1021–1026.

    CAS  PubMed  Google Scholar 

  24. Tsukiyama T, Wu C . Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 1995; 83: 1011–1020.

    CAS  PubMed  Google Scholar 

  25. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT . ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 1997; 90: 145–155.

    CAS  PubMed  Google Scholar 

  26. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB . Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997; 388: 598–602.

    CAS  PubMed  Google Scholar 

  27. Okabe I, Bailey LC, Attree O, Srinivasan S, Perkel JM, Laurent BC et al. Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeast S. cerevisiae. Nucleic Acids Res 1992; 20: 4649–4655.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aihara T, Miyoshi Y, Koyama K, Suzuki M, Takahashi E, Monden M et al. Cloning and mapping of SMARCA5 encoding hSNF2H, a novel human homologue of Drosophila ISWI. Cytogenet Cell Genet 1998; 81: 191–193.

    CAS  PubMed  Google Scholar 

  29. LeRoy G, Loyola A, Lane WS, Reinberg D . Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem 2000; 275: 14787–14790.

    CAS  PubMed  Google Scholar 

  30. Poot RA, Dellaire G, Hulsmann BB, Grimaldi MA, Corona DF, Becker PB et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J 2000; 19: 3377–3387.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. LeRoy G, Orphanides G, Lane WS, Reinberg D . Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 1998; 282: 1900–1904.

    CAS  PubMed  Google Scholar 

  32. Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R . Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J 2003; 22: 6089–6100.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 1999; 3: 239–245.

    CAS  PubMed  Google Scholar 

  34. Clapier CR, Cairns BR . Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 2012; 492: 280–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludwigsen J, Klinker H, Mueller-Planitz F . No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep 2013; 14: 1092–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 2001; 8: 531–543.

    CAS  PubMed  Google Scholar 

  37. Gdula DA, Sandaltzopoulos R, Tsukiyama T, Ossipow V, Wu C . Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodeling factor complex. Genes Dev 1998; 12: 3206–3216.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C . Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci USA 1998; 95: 132–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT . ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 1999; 13: 1529–1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hwang WL, Deindl S, Harada BT, Zhuang X . Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 2014; 512: 213–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eberharter A, Ferrari S, Langst G, Straub T, Imhof A, Varga-Weisz P et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 2001; 20: 3781–3788.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Corona DF, Eberharter A, Budde A, Deuring R, Ferrari S, Varga-Weisz P et al. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J 2000; 19: 3049–3059.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Loyola A, Huang JY, LeRoy G, Hu S, Wang YH, Donnelly RJ et al. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol 2003; 23: 6759–6768.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizuguchi G, Tsukiyama T, Wisniewski J, Wu C . Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol Cell 1997; 1: 141–150.

    CAS  PubMed  Google Scholar 

  45. Aydin OZ, Vermeulen W, Lans H . ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 2014; 13: 3016–3025.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W . NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998; 2: 851–861.

    CAS  PubMed  Google Scholar 

  47. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D . The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998; 95: 279–289.

    CAS  PubMed  Google Scholar 

  48. Wade PA, Jones PL, Vermaak D, Wolffe AP . A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Cur Biol 1998; 8: 843–846.

    CAS  Google Scholar 

  49. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL . Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 1998; 395: 917–921.

    Article  CAS  PubMed  Google Scholar 

  50. Torchy MP, Hamiche A, Klaholz BP . Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 2015; 72: 2491–2507.

    CAS  PubMed  Google Scholar 

  51. Musselman CA, Ramirez J, Sims JK, Mansfield RE, Oliver SS, Denu JM et al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proc Natl Acad Sci USA 2012; 109: 787–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 1998; 95: 3519–3524.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 2008; 16: 1077–1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA et al. Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. J Biol Chem 2014; 289: 21844–21855.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Wang H, Ma F, Xu D, Chang Y, Zhang J et al. MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol Oncol 2015; 9: 218–235.

    CAS  PubMed  Google Scholar 

  56. Nair SS, Li DQ, Kumar R . A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell 2013; 49: 704–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu M, Wang L, Li Q, Li J, Qin J, Wong J . The MTA family proteins as novel histone H3 binding proteins. Cell Biosci 2013; 3: 1.

    PubMed  PubMed Central  Google Scholar 

  58. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A . Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 2001; 15: 710–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999; 13: 1924–1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    CAS  PubMed  Google Scholar 

  61. Bisson N, Wedlich D, Moss T . The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus. Cell Cycle 2012; 11: 1316–1324.

    CAS  PubMed  Google Scholar 

  62. Morrison AJ, Shen X . Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 2009; 10: 373–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen X, Mizuguchi G, Hamiche A, Wu C . A chromatin remodelling complex involved in transcription and DNA processing. Nature 2000; 406: 541–544.

    CAS  PubMed  Google Scholar 

  64. Jin J, Cai Y, Yao T, Gottschalk AJ, Florens L, Swanson SK et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J Biol Chem 2005; 280: 41207–41212.

    CAS  PubMed  Google Scholar 

  65. Min JN, Tian Y, Xiao Y, Wu L, Li L, Chang S . The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Res 2013; 23: 1396–1413.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C . ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004; 303: 343–348.

    CAS  PubMed  Google Scholar 

  67. Choi J, Heo K . An W. Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 2009; 37: 5993–6007.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, Wei D et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 2010; 143: 725–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 2004; 119: 767–775.

    CAS  PubMed  Google Scholar 

  70. van Attikum H, Fritsch O, Hohn B, Gasser SM . Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 2004; 119: 777–788.

    CAS  PubMed  Google Scholar 

  71. Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell 2014; 14: 575–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Watanabe S, Tan D, Lakshminarasimhan M, Washburn MP, Hong EJ, Walz T et al. Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nat Commun 2015; 6: 7108.

    CAS  PubMed  Google Scholar 

  73. van Attikum H, Fritsch O, Gasser SM . Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 2007; 26: 4113–4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Papamichos-Chronakis M, Krebs JE, Peterson CL . Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 2006; 20: 2437–2449.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schneppenheim R, Fruhwald MC, Gesk S, Hasselblatt M, Jeibmann A, Kordes U et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 2010; 86: 279–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B . Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 1999; 59: 74–79.

    CAS  PubMed  Google Scholar 

  77. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–206.

    CAS  PubMed  Google Scholar 

  78. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH . Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97: 13796–13800.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rousseau-Merck MF, Versteege I, Legrand I, Couturier J, Mairal A, Delattre O et al. hSNF5/INI1 inactivation is mainly associated with homozygous deletions and mitotic recombinations in rhabdoid tumors. Cancer Res 1999; 59: 3152–3156.

    CAS  PubMed  Google Scholar 

  80. Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P . Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet 2007; 80: 805–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Modena P, Lualdi E, Facchinetti F, Galli L, Teixeira MR, Pilotti S et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 2005; 65: 4012–4019.

    CAS  PubMed  Google Scholar 

  82. Sullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA . Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol 2013; 26: 385–392.

    CAS  PubMed  Google Scholar 

  83. Grand F, Kulkarni S, Chase A, Goldman JM, Gordon M, Cross NC . Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res 1999; 59: 3870–3874.

    CAS  PubMed  Google Scholar 

  84. Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K et al. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 2000; 60: 6171–6177.

    CAS  PubMed  Google Scholar 

  85. Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 2012; 33: 100–103.

    CAS  PubMed  Google Scholar 

  86. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363: 1532–1543.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011; 43: 1219–1223.

    CAS  PubMed  Google Scholar 

  88. Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012; 44: 1117–1121.

    CAS  PubMed  Google Scholar 

  89. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012; 44: 570–574.

    CAS  PubMed  Google Scholar 

  90. Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet 2012; 44: 1310–1315.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330: 228–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44: 760–764.

    CAS  PubMed  Google Scholar 

  93. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun 2014; 5: 5006.

    CAS  PubMed  Google Scholar 

  95. Cajuso T, Hanninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R et al. Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer 2014; 135: 611–623.

    CAS  PubMed  Google Scholar 

  96. Sausen M, Leary RJ, Jones S, Wu J, Reynolds CP, Liu X et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 2013; 45: 12–17.

    CAS  PubMed  Google Scholar 

  97. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012; 486: 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 2011; 43: 828–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao H, Wang J, Han Y, Huang Z, Ying J, Bi X et al. ARID2: a new tumor suppressor gene in hepatocellular carcinoma. Oncotarget 2011; 2: 886–891.

    PubMed  PubMed Central  Google Scholar 

  100. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. India Project Team of the International Cancer Genome Consortium. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 2013; 4: 2873.

    Google Scholar 

  102. Manceau G, Letouze E, Guichard C, Didelot A, Cazes A, Corte H et al. Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma. Int J Cancer 2013; 132: 2217–2221.

    CAS  PubMed  Google Scholar 

  103. Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 2014; 46: 438–443.

    CAS  PubMed  Google Scholar 

  104. Huether R, Dong L, Chen X, Wu G, Parker M, Wei L et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun 2014; 5: 3630.

    PubMed  Google Scholar 

  105. Jelinic P, Mueller JJ, Olvera N, Dao F, Scott SN, Shah R et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014; 46: 424–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014; 46: 427–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Google Scholar 

  108. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 2012; 44: 1321–1325.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012; 488: 100–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012; 488: 106–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA 2012; 109: E252–E259.

    CAS  PubMed  Google Scholar 

  112. Smith MJ, O'Sullivan J, Bhaskar SS, Hadfield KD, Poke G, Caird J et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 2013; 45: 295–298.

    CAS  PubMed  Google Scholar 

  113. Smith MJ, Wallace AJ, Bennett C, Hasselblatt M, Elert-Dobkowska E, Evans LT et al. Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol 2014; 234: 436–440.

    CAS  PubMed  Google Scholar 

  114. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45: 1470–1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kapur P, Pena-Llopis S, Christie A, Zhrebker L, Pavia-Jimenez A, Rathmell WK et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 2013; 14: 159–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci USA 2013; 110: 2916–2921.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim MS, Chung NG, Kang MR, Yoo NJ, Lee SH . Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 2011; 58: 660–668.

    PubMed  Google Scholar 

  119. Marquez SB, Thompson KW, Lu L, Reisman D . Beyond mutations: additional mechanisms and implications of SWI/SNF complex inactivation. Front Oncol 2014; 4: 372.

    PubMed  Google Scholar 

  120. Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, Reisman D . The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 2007; 26: 7058–7066.

    CAS  PubMed  Google Scholar 

  121. Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, Lu L et al. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget 2014; 5: 3316–3332.

    PubMed  PubMed Central  Google Scholar 

  122. Yamamichi N, Yamamichi-Nishina M, Mizutani T, Watanabe H, Minoguchi S, Kobayashi N et al. The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 2005; 24: 5471–5481.

    CAS  PubMed  Google Scholar 

  123. Gramling S, Rogers C, Liu G, Reisman D . Pharmacologic reversal of epigenetic silencing of the anticancer protein BRM: a novel targeted treatment strategy. Oncogene 2011; 30: 3289–3294.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kahali B, Gramling SJ, Marquez SB, Thompson K, Lu L, Reisman D . Identifying targets for the restoration and reactivation of BRM. Oncogene 2014; 33: 653–664.

    CAS  PubMed  Google Scholar 

  125. Khursheed M, Kolla JN, Kotapalli V, Gupta N, Gowrishankar S, Uppin SG et al. ARID1B, a member of the human SWI/SNF chromatin remodeling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines. Br J Cancer 2013; 108: 2056–2062.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li DQ, Kumar R . Unravelling the complexity and functions of MTA coregulators in human cancer. Adv Cancer Res 2015; 127: 1–47.

    CAS  PubMed  Google Scholar 

  127. Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 2012; 143: e811–e815.

    Google Scholar 

  128. Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 2008; 14: 1669–1677.

    CAS  PubMed  Google Scholar 

  129. Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 2008; 98: 604–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Xie C, Fu L, Xie L, Liu N, Li Q . Rsf-1 overexpression serves as a prognostic marker in human hepatocellular carcinoma. Tumour Biol 2014; 35: 7595–7601.

    CAS  PubMed  Google Scholar 

  131. Liu S, Dong Q, Wang E . Rsf-1 overexpression correlates with poor prognosis and cell proliferation in colon cancer. Tumour Biol 2012; 33: 1485–1491.

    CAS  PubMed  Google Scholar 

  132. Lin CY, Tian YF, Wu LC, Chen LT, Lin LC, Hsing CH et al. Rsf-1 expression in rectal cancer: with special emphasis on the independent prognostic value after neoadjuvant chemoradiation. J Clin Pathol 2012; 65: 687–692.

    PubMed  Google Scholar 

  133. Liang PI, Wu LC, Sheu JJ, Wu TF, Shen KH, Wang YH et al. Rsf-1/HBXAP overexpression is independent of gene amplification and is associated with poor outcome in patients with urinary bladder urothelial carcinoma. J Clin Pathol 2012; 65: 802–807.

    CAS  PubMed  Google Scholar 

  134. Li H, Zhang Y, Bai X, Peng Y, He P . Rsf-1 overexpression in human prostate cancer, implication as a prognostic marker. Tumour Biol 2014; 35: 5771–5776.

    CAS  PubMed  Google Scholar 

  135. Shih IeM, Sheu JJ, Santillan A, Nakayama K, Yen MJ, Bristow RE et al. Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci USA 2005; 102: 14004–14009.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fang FM, Li CF, Huang HY, Lai MT, Chen CM, Chiu IW et al. Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am J Pathol 2011; 178: 2407–2415.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tai HC, Huang HY, Lee SW, Lin CY, Sheu MJ, Chang SL et al. Associations of Rsf-1 overexpression with poor therapeutic response and worse survival in patients with nasopharyngeal carcinoma. J Clin Pathol 2012; 65: 248–253.

    PubMed  Google Scholar 

  138. Yang YI, Ahn JH, Lee KT, Shih IeM, Choi JH . RSF1 is a positive regulator of NF-kappaB-induced gene expression required for ovarian cancer chemoresistance. Cancer Res 2014; 74: 2258–2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Choi JH, Sheu JJ, Guan B, Jinawath N, Markowski P, Wang TL et al. Functional analysis of 11q13.5 amplicon identifies Rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer. Cancer Res 2009; 69: 1407–1415.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Jin Q, Mao X, Li B, Guan S, Yao F, Jin F . Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour Biol 2015; 36: 1895–1902.

    CAS  PubMed  Google Scholar 

  141. Sheu JJ, Choi JH, Yildiz I, Tsai FJ, Shaul Y, Wang TL et al. The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res 2008; 68: 4050–4057.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G et al. The SWI/SNF ATPases are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol 2015; 230: 2683–2694.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Taulli R, Foglizzo V, Morena D, Coda DM, Ala U, Bersani F et al. Failure to downregulate the BAF53a subunit of the SWI/SNF chromatin remodeling complex contributes to the differentiation block in rhabdomyosarcoma. Oncogene 2014; 33: 2354–2362.

    CAS  PubMed  Google Scholar 

  144. Balasubramaniam S, Comstock CE, Ertel A, Jeong KW, Stallcup MR, Addya S et al. Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin Cancer Res 2013; 19: 2657–2667.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res 2015; 75: 754–765.

    CAS  PubMed  Google Scholar 

  146. Heeboll S, Borre M, Ottosen PD, Andersen CL, Mansilla F, Dyrskjot L et al. SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation. Histol Histopathol 2008; 23: 1069–1076.

    CAS  PubMed  Google Scholar 

  147. Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sorensen FB, Verspaget HW et al. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer 2009; 100: 511–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Orvis T, Hepperla A, Walter V, Song S, Simon J, Parker J et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res 2014; 74: 6486–6498.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu P, Roberts CW . The SWI/SNF tumor suppressor complex: Regulation of promoter nucleosomes and beyond. Nucleus 2013; 4: 374–378.

    PubMed  PubMed Central  Google Scholar 

  150. Tolstorukov MY, Sansam CG, Lu P, Koellhoffer EC, Helming KC, Alver BH et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci USA 2013; 110: 10165–10170.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Song S, Walter V, Karaca M, Li Y, Bartlett CS, Smiraglia DJ et al. Gene silencing associated with SWI/SNF complex loss during NSCLC development. Mol Cancer Res 2014; 12: 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Dai Y, Ngo D, Jacob J, Forman LW, Faller DV . Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 2008; 29: 1725–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang G, Fu Y, Yang X, Luo X, Wang J, Gong J et al. Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene 2016; 35: 651–661.

    PubMed  Google Scholar 

  154. Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ . The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 2009; 28: 2492–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP . SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 2008; 28: 3457–3464.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LM, Mohd-Sarip A et al. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279: 3807–3816.

    CAS  PubMed  Google Scholar 

  157. Vries RG, Bezrookove V, Zuijderduijn LM, Kia SK, Houweling A, Oruetxebarria I et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 2005; 19: 665–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Xu Y, Yan W, Chen X . SNF5, a core component of the SWI/SNF complex, is necessary for p53 expression and cell survival, in part through eIF4E. Oncogene 2010; 29: 4090–4100.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 2005; 102: 17745–17750.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kuwahara Y, Wei D, Durand J, Weissman BE . SNF5 reexpression in malignant rhabdoid tumors regulates transcription of target genes by recruitment of SWI/SNF complexes and RNAPII to the transcription start site of their promoters. Mol Cancer Res 2013; 11: 251–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Darr J, Klochendler A, Isaac S, Eden A . Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis. Oncogene 2014; 33: 3024–3032.

    CAS  PubMed  Google Scholar 

  162. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010; 16: 1429–1433.

    CAS  PubMed  Google Scholar 

  163. Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 2002; 22: 5975–5988.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Caramel J, Quignon F, Delattre O . RhoA-dependent regulation of cell migration by the tumor suppressor hSNF5/INI1. Cancer Res 2008; 68: 6154–6161.

    CAS  PubMed  Google Scholar 

  165. Mora-Blanco EL, Mishina Y, Tillman EJ, Cho YJ, Thom CS, Pomeroy SL et al. Activation of beta-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 2014; 33: 933–938.

    CAS  PubMed  Google Scholar 

  166. Lee SH, Jung YS, Chung JY, Oh AY, Lee SJ, Choi DH et al. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1-PUMA pathway. Cell Death Dis 2011; 2: e235.

    PubMed  PubMed Central  Google Scholar 

  167. Hah N, Kolkman A, Ruhl DD, Pijnappel WW, Heck AJ, Timmers HT et al. A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Res 2010; 70: 4402–4411.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Garcia-Pedrero JM, Kiskinis E, Parker MG, Belandia B . The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J Biol Chem 2006; 281: 22656–22664.

    CAS  PubMed  Google Scholar 

  169. Link KA, Burd CJ, Williams E, Marshall T, Rosson G, Henry E et al. BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 2005; 25: 2200–2215.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Link KA, Balasubramaniam S, Sharma A, Comstock CE, Godoy-Tundidor S, Powers N et al. Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Cancer Res 2008; 68: 4551–4558.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, Jenster G . Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol Endocrinol 2009; 23: 1776–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Jordan NV, Prat A, Abell AN, Zawistowski JS, Sciaky N, Karginova OA et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol 2013; 33: 3011–3025.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Xia W, Nagase S, Montia AG, Kalachikov SM, Keniry M, Su T et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res 2008; 68: 1667–1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mamo A, Cavallone L, Tuzmen S, Chabot C, Ferrario C, Hassan S et al. An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene 2012; 31: 2090–2100.

    CAS  PubMed  Google Scholar 

  175. Guan B, Wang TL, Shih Ie M . ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 2011; 71: 6718–6727.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang DD, Chen YB, Pan K, Wang W, Chen SP, Chen JG et al. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS ONE 2012; 7: e40364.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ et al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis 2014; 35: 867–876.

    CAS  PubMed  Google Scholar 

  178. Ye J, Zhou Y, Weiser MR, Gonen M, Zhang L, Samdani T et al. Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage. Hum Pathol 2014; 45: 2430–2436.

    CAS  PubMed  Google Scholar 

  179. Lichner Z, Scorilas A, White NM, Girgis AH, Rotstein L, Wiegand KC et al. The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am J Pathol 2013; 182: 1163–1170.

    CAS  PubMed  Google Scholar 

  180. Cho H, Kim JS, Chung H, Perry C, Lee H, Kim JH . Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer. Hum Pathol 2013; 44: 1365–1374.

    CAS  PubMed  Google Scholar 

  181. Tae S, Karkhanis V, Velasco K, Yaneva M, Erdjument-Bromage H, Tempst P et al. Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic acids Res 2011; 39: 5424–5438.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sakamaki A, Katsuragi Y, Otsuka K, Tomita M, Obata M, Iwasaki T et al. Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration after gamma-irradiation through Wnt/beta-catenin pathway. Carcinogenesis 2015; 36: 622–631.

    CAS  PubMed  Google Scholar 

  183. Sheu JJ, Choi JH, Guan B, Tsai FJ, Hua CH, Lai MT et al. Rsf-1, a chromatin remodelling protein, interacts with cyclin E1 and promotes tumour development. J Pathol 2013; 229: 559–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sheu JJ, Guan B, Choi JH, Lin A, Lee CH, Hsiao YT et al. Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J Biol Chem 2010; 285: 38260–38269.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Vidi PA, Liu J, Salles D, Jayaraman S, Dorfman G, Gray M et al. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks. Nucleic Acids Res 2014; 42: 6365–6379.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 2013; 51: 454–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mueller AC, Sun D, Dutta A . The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 2013; 32: 1164–1172.

    CAS  PubMed  Google Scholar 

  188. Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 2010; 40: 976–987.

    CAS  PubMed  Google Scholar 

  189. Ye Y, Xiao Y, Wang W, Wang Q, Yearsley K, Wani AA et al. Inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death. Mol Cancer Res 2009; 7: 1984–1999.

    CAS  PubMed  Google Scholar 

  190. Denslow SA, Wade PA . The human Mi-2/NuRD complex and gene regulation. Oncogene 2007; 26: 5433–5438.

    CAS  PubMed  Google Scholar 

  191. Reddy SD, Pakala SB, Molli PR, Sahni N, Karanam NK, Mudvari P et al. Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J Biol Chem 2012; 287: 27843–27850.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Li DQ, Yang Y, Kumar R . MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Cancer Metastasis Rev 2014; 33: 993–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Smith-Roe SL, Nakamura J, Holley D, Chastain PD 2nd, Rosson GB, Simpson DA et al. SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6: 732–745.

    PubMed  PubMed Central  Google Scholar 

  194. Liu X, Tian X, Wang F, Ma Y, Kornmann M, Yang Y . BRG1 promotes chemoresistance of pancreatic cancer cells through crosstalking with Akt signalling. Eur J Cancer 2014; 50: 2251–2262.

    CAS  PubMed  Google Scholar 

  195. Kwon SJ, Lee SK, Na J, Lee SA, Lee HS, Park JH et al. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo. Mol Cancer Ther 2015; 14: 597–607.

    CAS  PubMed  Google Scholar 

  196. Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM . Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res 2012; 318: 1973–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lin H, Wong RP, Martinka M, Li G . Loss of SNF5 expression correlates with poor patient survival in melanoma. Clin Cancer Res 2009; 15: 6404–6411.

    CAS  PubMed  Google Scholar 

  198. Iwagami Y, Eguchi H, Nagano H, Akita H, Hama N, Wada H et al. miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer 2013; 109: 502–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Papadakis AI, Sun C, Knijnenburg TA, Xue Y, Grernrum W, Holzel M et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res 2015; 25: 445–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L et al. ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discov 2015; 5: 752–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T et al. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res 2014; 74: 2465–2475.

    CAS  PubMed  Google Scholar 

  202. Pottier N, Yang W, Assem M, Panetta JC, Pei D, Paugh SW et al. The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J Natl Cancer Inst 2008; 100: 1792–1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Hohmann AF, Vakoc CR . A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet 2014; 30: 356–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wilson BG, Helming KC, Wang X, Kim Y, Vazquez F, Jagani Z et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol 2014; 34: 1136–1144.

    PubMed  PubMed Central  Google Scholar 

  205. Oike T, Ogiwara H, Tominaga Y, Ito K, Ando O, Tsuta K et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res 2013; 73: 5508–5518.

    CAS  PubMed  Google Scholar 

  206. Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, Frias E et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl Acad Sci USA 2014; 111: 3128–3133.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang X, Sansam CG, Thom CS, Metzger D, Evans JA, Nguyen PT et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res 2009; 69: 8094–8101.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN . Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 2004; 23: 3462–3473.

    CAS  PubMed  Google Scholar 

  209. Dar AA, Nosrati M, Bezrookove V, de Semir D, Majid S, Thummala S et al. The role of BPTF in melanoma progression and in response to BRAF-targeted therapy. J Natl Cancer Inst 2015; 107: pii: djv034.

    Google Scholar 

  210. Yu L, Su YS, Zhao J, Wang H, Li W . Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett 2013; 587: 2542–2551.

    CAS  PubMed  Google Scholar 

  211. Xu Y, Jiang Z, Yin P, Li Q, Liu J . Role for Class I histone deacetylases in multidrug resistance. Exp Cell Res 2012; 318: 177–186.

    CAS  PubMed  Google Scholar 

  212. Pan MR, Hsieh HJ, Dai H, Hung WC, Li K, Peng G et al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. J Biol Chem 2012; 287: 6764–6772.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR . An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 2009; 106: 5187–5191.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D et al. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 2012; 31: 593–605.

    CAS  PubMed  Google Scholar 

  215. Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 2006; 442: 91–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011; 145: 692–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149: 214–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF, Tang Y et al. A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications. Structure 2015; 23: 1801–1814.

    CAS  PubMed  Google Scholar 

  219. Campos EI, Chin MY, Kuo WH, Li G . Biological functions of the ING family tumor suppressors. Cell Mol Life Sci 2004; 61: 2597–2613.

    CAS  PubMed  Google Scholar 

  220. Santiago C, Nguyen K, Schapira M . Druggability of methyl-lysine binding sites. J Comput Aided Mol Des 2011; 25: 1171–1178.

    CAS  PubMed  Google Scholar 

  221. James LI, Korboukh VK, Krichevsky L, Baughman BM, Herold JM, Norris JL et al. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J Med Chem 2013; 56: 7358–7371.

    CAS  PubMed  Google Scholar 

  222. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 2015; 11: 571–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Knapp S, Weinmann H . Small-molecule modulators for epigenetics targets. ChemMedChem 2013; 8: 1885–1891.

    CAS  PubMed  Google Scholar 

  224. Filippakopoulos P, Knapp S . Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13: 337–356.

    CAS  PubMed  Google Scholar 

  225. Vidler LR, Brown N, Knapp S, Hoelder S . Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 2012; 55: 7346–7359.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Filippakopoulos P, Knapp S . The bromodomain interaction module. FEBS Lett 2012; 586: 2692–2704.

    CAS  PubMed  Google Scholar 

  227. Muller S, Filippakopoulos P, Knapp S . Bromodomains as therapeutic targets. Expert Rev Mol Med 2011; 13: e29.

    PubMed  PubMed Central  Google Scholar 

  228. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Basheer F, Huntly BJ . BET bromodomain inhibitors in leukemia. Exp Hematol 2015; 43: 718–731.

    CAS  PubMed  Google Scholar 

  230. Jung M, Gelato KA, Fernandez-Montalvan A, Siegel S, Haendler B . Targeting BET bromodomains for cancer treatment. Epigenomics 2015; 7: 487–501.

    CAS  PubMed  Google Scholar 

  231. Sentani K, Oue N, Kondo H, Kuraoka K, Motoshita J, Ito R et al. Increased expression but not genetic alteration of BRG1, a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology 2001; 69: 315–320.

    CAS  PubMed  Google Scholar 

  232. Liu XB, Sun AJ, Wang C, Chen LR . [Expression of BRG1 and BRM proteins in prostatic cancer]. Zhonghua Bing Li Xue Za Zhi 2010; 39: 591–594.

    CAS  PubMed  Google Scholar 

  233. Lin H, Wong RP, Martinka M, Li G . BRG1 expression is increased in human cutaneous melanoma. Br J Dermatol 2010; 163: 502–510.

    CAS  PubMed  Google Scholar 

  234. Brown PJ, Muller S . Open access chemical probes for epigenetic targets. Future Med Chem 2015; 7: 1901–1917.

    CAS  PubMed  Google Scholar 

  235. Hammitzsch A, Tallant C, Fedorov O, O'Mahony A, Brennan PE, Hay DA et al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA 2015; 112: 10768–10773.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J et al. Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res 2015; 75: 5106–5119.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G et al. NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001; 20: 4892–4900.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Mayer C, Neubert M, Grummt I . The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 2008; 9: 774–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhou Y, Grummt I . The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Cur Biol 2005; 15: 1434–1438.

    CAS  Google Scholar 

  240. Gu L, Frommel SC, Oakes CC, Simon R, Grupp K, Gerig CY et al. BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 2015; 47: 22–30.

    CAS  PubMed  Google Scholar 

  241. Drouin L, McGrath S, Vidler LR, Chaikuad A, Monteiro O, Tallant C et al. Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J Med Chem 2015; 58: 2553–2559.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Chen P, Chaikuad A, Bamborough P, Bantscheff M, Bountra C, Chung CW et al. Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. J Med Chem 2015, e-pub ahead of print 6 April 2015..

  243. Zou JX, Revenko AS, Li LB, Gemo AT, Chen HW . ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc Natl Acad Sci USA 2007; 104: 18067–18072.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Ciro M, Prosperini E, Quarto M, Grazini U, Walfridsson J, McBlane F et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res 2009; 69: 8491–8498.

    CAS  PubMed  Google Scholar 

  245. Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW . Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol 2010; 30: 5260–5272.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J et al. Gene expression patterns in human liver cancers. Mol Biol cell 2002; 13: 1929–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    CAS  PubMed  Google Scholar 

  248. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    CAS  PubMed  Google Scholar 

  249. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 2010; 29: 5171–5181.

    CAS  PubMed  Google Scholar 

  251. Bamborough P, Chung CW, Furze RC, Grandi P, Michon AM, Sheppard RJ et al. Structure-based optimization of naphthyridones into potent ATAD2 bromodomain inhibitors. J Med Chem 2015; 58: 6151–6178.

    CAS  PubMed  Google Scholar 

  252. Peterson CL, Dingwall A, Scott MP . Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci USA 1994; 91: 2905–2908.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Lemon B, Inouye C, King DS, Tjian R . Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 2001; 414: 924–928.

    CAS  PubMed  Google Scholar 

  254. Ryme J, Asp P, Bohm S, Cavellan E, Farrants AK . Variations in the composition of mammalian SWI/SNF chromatin remodelling complexes. J Cell Biochem 2009; 108: 565–576.

    CAS  PubMed  Google Scholar 

  255. Burrows AE, Smogorzewska A, Elledge SJ . Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 2010; 107: 14280–14285.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 2004; 18: 3106–3116.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Fedorov O, Castex J, Tallant C, Owen DR, Martin S, Aldeghi M et al(2015). Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Sci Adv 2015; 1: e1500723.

    PubMed  PubMed Central  Google Scholar 

  258. Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res 2015; 75: 3865–3878.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH et al. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. J Med Chem 2015, ; e-pub ahead of print 30 April 2015..

  260. Clark PG, Vieira LC, Tallant C, Fedorov O, Singleton DC, Rogers CM et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew Chem Int Ed Engl 2015; 54: 6217–6221.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015; 348: 1376–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  262. DeCristofaro MF, Betz BL, Wang W, Weissman BE . Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms' tumors. Oncogene 1999; 18: 7559–7565.

    CAS  PubMed  Google Scholar 

  263. Gunduz E, Gunduz M, Ouchida M, Nagatsuka H, Beder L, Tsujigiwa H et al. Genetic and epigenetic alterations of BRG1 promote oral cancer development. Int J Oncol 2005; 26: 201–210.

    CAS  PubMed  Google Scholar 

  264. Yamamichi N, Inada K, Ichinose M, Yamamichi-Nishina M, Mizutani T, Watanabe H et al. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res 2007; 67: 10727–10735.

    CAS  PubMed  Google Scholar 

  265. Sun A, Tawfik O, Gayed B, Thrasher JB, Hoestje S, Li C et al. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers. Prostate 2007; 67: 203–213.

    CAS  PubMed  Google Scholar 

  266. Saladi SV, Keenen B, Marathe HG, Qi H, Chin KV, de la Serna IL . Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness. Mol Cancer 2010; 9: 280.

    PubMed  PubMed Central  Google Scholar 

  267. Chen TJ, Huang SC, Huang HY, Wei YC, Li CF . Rsf-1/HBXAP overexpression is associated with disease-specific survival of patients with gallbladder carcinoma. APMIS 2011; 119: 808–814.

    PubMed  Google Scholar 

  268. Li WF, Liu N, Cui RX, He QM, Chen M, Jiang N et al. Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma. J Trans Med 2012; 10: 78.

    Google Scholar 

  269. Park JO, Jung CK, Sun DI, Joo YH, Kim MS . Relationships between metastasis-associated protein (MTA) 1 and lymphatic metastasis in tonsil cancer. Eur Arch Otorhinolaryngol 2011; 268: 1329–1334.

    PubMed  Google Scholar 

  270. Jang KS, Paik SS, Chung H, Oh YH, Kong G . MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci 2006; 97: 374–379.

    CAS  PubMed  Google Scholar 

  271. Toh Y, Kuwano H, Mori M, Nicolson GL, Sugimachi K . Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br J Cancer 1999; 79: 1723–1726.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Toh Y, Oki E, Oda S, Tokunaga E, Ohno S, Maehara Y et al. Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer 1997; 74: 459–463.

    CAS  PubMed  Google Scholar 

  273. Moon WS, Chang K, Tarnawski AS . Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: Relationship to vascular invasion and estrogen receptor-alpha. Hum Pathol 2004; 35: 424–429.

    CAS  PubMed  Google Scholar 

  274. Wang W, Yang ZL, Liu JQ, Yang LP, Yang XJ, Fu X . Overexpression of MTA1 and loss of KAI-1 and KiSS-1 expressions are associated with invasion, metastasis, and poor-prognosis of gallbladder adenocarcinoma. Tumori 2014; 100: 667–674.

    CAS  PubMed  Google Scholar 

  275. Higashijima J, Kurita N, Miyatani T, Yoshikawa K, Morimoto S, Nishioka M et al. Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncol Rep 2011; 26: 343–348.

    PubMed  Google Scholar 

  276. Iguchi H, Imura G, Toh Y, Ogata Y . Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol 2000; 16: 1211–1214.

    CAS  PubMed  Google Scholar 

  277. Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Yukiue H, Kaji M et al. Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer 2002; 35: 149–154.

    PubMed  Google Scholar 

  278. Hofer MD, Kuefer R, Varambally S, Li H, Ma J, Shapiro GI et al. The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 2004; 64: 825–829.

    CAS  PubMed  Google Scholar 

  279. Balasenthil S, Broaddus RR, Kumar R . Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Hum Pathol 2006; 37: 656–661.

    CAS  PubMed  Google Scholar 

  280. Dannenmann C, Shabani N, Friese K, Jeschke U, Mylonas I, Bruning A . The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biol Ther 2008; 7: 1460–1467.

    CAS  PubMed  Google Scholar 

  281. Liu T, Yang M, Yang S, Ge T, Gu L, Lou G . Metastasis-associated protein 1 is a novel marker predicting survival and lymph nodes metastasis in cervical cancer. Hum Pathol 2013; 44: 2275–2281.

    CAS  PubMed  Google Scholar 

  282. Covington KR, Brusco L, Barone I, Tsimelzon A, Selever J, Corona-Rodriguez A et al. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 2013; 141: 375–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Lee H, Ryu SH, Hong SS, Seo DD, Min HJ, Jang MK et al. Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. J Gastroenterol Hepatol 2009; 24: 1445–1450.

    PubMed  Google Scholar 

  284. Li H, Sun L, Xu Y, Li Z, Luo W, Tang Z et al. Overexpression of MTA3 correlates with tumor progression in non-small cell lung cancer. PLoS ONE 2013; 8: e66679.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Chu H, Chen X, Wang H, Du Y, Wang Y, Zang W et al. MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol 2014; 35: 3487–3494.

    CAS  PubMed  Google Scholar 

  286. Campos B, Bermejo JL, Han L, Felsberg J, Ahmadi R, Grabe N et al. Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Sci 2011; 102: 387–392.

    CAS  PubMed  Google Scholar 

  287. Giaginis C, Alexandrou P, Delladetsima I, Giannopoulou I, Patsouris E, Theocharis S . Clinical significance of histone deacetylase (HDAC)-1, HDAC-2, HDAC-4, and HDAC-6 expression in human malignant and benign thyroid lesions. Tumour Biol 2014; 35: 61–71.

    CAS  PubMed  Google Scholar 

  288. Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol 2010; 17: 3336–3343.

    PubMed  Google Scholar 

  289. Fritzsche FR, Weichert W, Roske A, Gekeler V, Beckers T, Stephan C et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 2008; 8: 381.

    PubMed  PubMed Central  Google Scholar 

  290. Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 2008; 10: 1021–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Marquard L, Poulsen CB, Gjerdrum LM, de Nully Brown P, Christensen IJ, Jensen PB et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 2009; 54: 688–698.

    PubMed  Google Scholar 

  292. Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A . Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin's lymphoma. Expert Opin Ther Targets 2010; 14: 577–584.

    CAS  PubMed  Google Scholar 

  293. Fritsche P, Seidler B, Schuler S, Schnieke A, Gottlicher M, Schmid RM et al. HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut 2009; 58: 1399–1409.

    CAS  PubMed  Google Scholar 

  294. Marquard L, Gjerdrum LM, Christensen IJ, Jensen PB, Sehested M, Ralfkiaer E . Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology 2008; 53: 267–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Wijdeven RH, Pang B, van der Zanden SY, Qiao X, Blomen V, Hoogstraat ML et al. Genome-wide identification and characterization of novel factors conferring resistance to topoisomerase II poisons in cancer. Cancer Res 2015; 75: 4176–4187.

    CAS  PubMed  Google Scholar 

  296. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov 2015; 5: 752–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Guillemette S, Serra RW, Peng M, Hayes JA, Konstantinopoulos PA, Green MR et al. Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev 2015; 29: 489–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ et al. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 2015; 126: 1462–1472.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Feng X, Zhang Q, Xia S, Xia B, Zhang Y, Deng X et al. MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Mol Cells 2014; 37: 699–704.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are in debt to our colleagues in this field whose original work may have not been cited here due to space limitations. The chromatin remodeling and signaling work in Kumar laboratory is being supported by grants from the National Institutes of Health grants CA98823 and CA090970. The Li laboratory is funded by the National Natural Science Foundation of China (Number 81372847 and 81572584), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Number 2013-06) and the Innovation Program of Shanghai Municipal Education Commission (Number 2015ZZ007). The Knapp laboratory is supported by the Structural Genomic Consortium, a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, the Canada Foundation for Innovation, the Eshelman Institute for Innovation, the Genome Canada, the Innovative Medicines Initiative (EU/EFPIA), Janssen, Merck & Co., Novartis Pharma AG, the Ontario Ministry of Economic Development and Innovation, Pfizer, the São Paulo Research Foundation-FAPESP, Takeda, and the Welcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Kumar or S Knapp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Li, DQ., Müller, S. et al. Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 35, 4423–4436 (2016). https://doi.org/10.1038/onc.2015.513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.513

This article is cited by

Search

Quick links