Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation

Subjects

Abstract

KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCFKDM2B) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  2. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg ME, Ziff EB . Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 1984; 311: 433–438.

    Article  CAS  PubMed  Google Scholar 

  4. Rauscher FJ III, Sambucetti LC, Curran T, Distel RJ, Spiegelman BM . Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 1988; 52: 471–480.

    Article  CAS  PubMed  Google Scholar 

  5. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M . The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988; 54: 541–552.

    Article  CAS  PubMed  Google Scholar 

  6. Sassone-Corsi P, Ransone LJ, Lamph WW, Verma IM . Direct interaction between fos and jun nuclear oncoproteins: role of the 'leucine zipper' domain. Nature 1988; 336: 692–695.

    Article  CAS  PubMed  Google Scholar 

  7. Glover JN, Harrison SC . Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 1995; 373: 257–261.

    Article  CAS  PubMed  Google Scholar 

  8. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T et al. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 2010; 141: 884–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Treisman R . Journey to the surface of the cell: Fos regulation and the SRE. EMBO J 1995; 14: 4905–4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gille H, Sharrocks AD, Shaw PE . Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–417.

    Article  CAS  PubMed  Google Scholar 

  11. Okazaki K, Sagata N . The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 1995; 14: 5048–5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stancovski I, Gonen H, Orian A, Schwartz AL, Ciechanover A . Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol 1995; 15: 7106–7116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen RH, Abate C, Blenis J . Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci USA 1993; 90: 10952–10956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakiri L, Reschke MO, Gefroh HA, Idarraga MH, Polzer K, Zenz R et al. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Oncogene 2011; 30: 1506–1517.

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki T, Kojima H, Kishimoto R, Ikeda A, Kunimoto H, Nakajima K . Spatiotemporal regulation of c-Fos by ERK5 and the E3 ubiquitin ligase UBR1, and its biological role. Mol Cell 2006; 24: 63–75.

    Article  CAS  PubMed  Google Scholar 

  16. Gilley R, March HN, Cook SJ . ERK1/2, but not ERK5, is necessary and sufficient for phosphorylation and activation of c-Fos. Cell Signal 2009; 21: 969–977.

    Article  CAS  PubMed  Google Scholar 

  17. He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y . Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 2013; 15: 373–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang G, He J, Zhang Y . Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 2012; 14: 457–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He J, Kallin EM, Tsukada Y, Zhang Y . The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 2008; 15: 1169–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfau R, Tzatsos A, Kampranis SC, Serebrennikova OB, Bear SE, Tsichlis PN . Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc Natl Acad Sci USA 2008; 105: 1907–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kottakis F, Foltopoulou P, Sanidas I, Keller P, Wronski A, Dake BT et al. NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self-renewal of breast cancer stem cells. Cancer Res 2014; 74: 3935–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He J, Nguyen AT, Zhang Y . KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 2011; 117: 3869–3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tzatsos A, Paskaleva P, Ferrari F, Deshpande V, Stoykova S, Contino G et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest 2013; 123: 727–739.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439: 811–816.

    Article  CAS  PubMed  Google Scholar 

  25. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 2012; 1: e00205.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Johansen Jens V, Helin K . Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 2013; 49: 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  27. Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ . Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol 2006; 26: 6880–6889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koyama-Nasu R, David G, Tanese N . The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nat Cell Biol 2007; 9: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  29. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86: 263–274.

    Article  CAS  PubMed  Google Scholar 

  30. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW . F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997; 91: 209–219.

    Article  CAS  PubMed  Google Scholar 

  31. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ . A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 1997; 91: 221–230.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416: 703–709.

    Article  CAS  PubMed  Google Scholar 

  33. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T . Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010; 143: 470–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maher VM, Heflich RH, McCormick JJ . Repair of DNA damage induced in human fibroblasts by N-substituted aryl compounds. Natl Cancer Inst Monogr 1981; 58: 217–222.

    CAS  Google Scholar 

  35. Furukawa M, Andrews PS, Xiong Y . Assays for RING family ubiquitin ligases. Methods Mol Biol 2005; 301: 37–46.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Fudan MCB laboratory for discussions and support throughout this study and Michele Pagano of NYU for providing plasmids expressing full-length human KDM2B cDNA. This work was supported by Chinese Ministry of Sciences and Technology 973 (Grant No. 2015CB910401), NSFC (Grant No. 81225016, 81430057), Shanghai Key basic research program (12JC1401100), Shanghai Outstanding Academic Leader (Grant No.13XD1400600) and the Youth Science and Technology Leading Talent by MOST (to Q-YL), NIH Grants EY022611 and CA132809 (to K-LG) and GM067113 (to YX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q-Y Lei, K-L Guan or Y Xiong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, XR., Zha, Z., Yuan, HX. et al. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene 35, 4179–4190 (2016). https://doi.org/10.1038/onc.2015.482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.482

This article is cited by

Search

Quick links