Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53

Abstract

The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma−/−;p21−/−) developed lymphoma at a rate comparable to Eμ-Myc;Puma−/− animals, notably with considerably longer latency than Eμ-Myc;p53+/-mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA-mediated apoptosis and p21-induced cell cycle arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lane DP . p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  PubMed  Google Scholar 

  2. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  3. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  4. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  5. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS et al. Mice deficient for p53 are developmentally normal but are susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  6. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Lowe SW, Sherr CJ . Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003; 13: 77–83.

    Article  CAS  PubMed  Google Scholar 

  8. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci US A 1998; 95: 8292–8297.

    Article  CAS  Google Scholar 

  9. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713–723.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    Article  CAS  PubMed  Google Scholar 

  11. Michalak EM, Jansen ES, Happo L, Cragg MS, Tai L, Smyth GK et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ 2009; 16: 684–696.

    Article  CAS  PubMed  Google Scholar 

  12. Garrison SP, Jeffers JR, Yang C, Nilsson JA, Hall MA, Rehg JE et al. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol 2008; 28: 5391–5402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  14. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999; 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  16. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003; 4: 321–328.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  18. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  19. Newbold A, Salmon JM, Martin BP, Stanley K, Johnstone RW . The role of p21(waf1/cip1) and p27(Kip1) in HDACi-mediated tumor cell death and cell cycle arrest in the Emu-myc model of B-cell lymphoma. Oncogene 2014; 33: 5415–5423.

    Article  CAS  PubMed  Google Scholar 

  20. Patino-Garcia A, Sotillo-Pineiro E, Sierrasesumaga-Ariznabarreta L . p21WAF1 mutation is not a predominant alteration in pediatric bone tumors. Pediatr Res 1998; 43: 393–395.

    Article  CAS  PubMed  Google Scholar 

  21. McKenzie KE, Siva A, Maier S, Runnebaum IB, Seshadri R, Sukumar S . Altered WAF1 genes do not play a role in abnormal cell cycle regulation in breast cancers lacking p53 mutations. Clin Cancer Res 1997; 3: 1669–1673.

    CAS  PubMed  Google Scholar 

  22. Shiohara M, el-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 1994; 84: 3781–3784.

    CAS  PubMed  Google Scholar 

  23. Jackson RJ, Adnane J, Coppola D, Cantor A, Sebti SM, Pledger WJ . Loss of the cell cycle inhibitors p21(Cip1) and p27(Kip1) enhances tumorigenesis in knockout mouse models. Oncogene 2002; 21: 8486–8497.

    Article  CAS  PubMed  Google Scholar 

  24. Topley GI, Okuyama R, Gonzales JG, Conti C, Dotto GP . p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci USA 1999; 96: 9089–9094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM . Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19: 5338–5347.

    Article  CAS  PubMed  Google Scholar 

  26. Yang WC, Mathew J, Velcich A, Edelmann W, Kucherlapati R, Lipkin M et al. Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 2001; 61: 565–569.

    CAS  PubMed  Google Scholar 

  27. Wang YA, Elson A, Leder P . Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci USA 1997; 94: 14590–14595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M . Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 2001; 61: 6234–6238.

    CAS  PubMed  Google Scholar 

  29. Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ . Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res 2002; 62: 2077–2084.

    CAS  PubMed  Google Scholar 

  30. Martins CP, Berns A . Loss of p27(Kip1) but not p21(Cip1) decreases survival and synergizes with MYC in murine lymphomagenesis. EMBO J 2002; 21: 3739–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G . p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 2006; 103: 19842–19847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Post SM, Quintas-Cardama A, Terzian T, Smith C, Eischen CM, Lozano G . p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 2010; 29: 1260–1269.

    Article  CAS  PubMed  Google Scholar 

  33. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013; 3: 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  34. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L, Milla L et al. An inducible lentiviral guide rna platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 2015; 10: 1422–1432.

    Article  CAS  PubMed  Google Scholar 

  36. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM . The Eμ-myc transgenic mouse: a model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 1988; 167: 353–371.

    Article  CAS  PubMed  Google Scholar 

  37. Langdon WY, Harris AW, Cory S, Adams JM . The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 1986; 47: 11–18.

    Article  CAS  PubMed  Google Scholar 

  38. Strasser A, Elefanty AG, Harris AW, Cory S . Progenitor tumours from Em-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J 1996; 15: 3823–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  PubMed  Google Scholar 

  40. Nakano K, Vousden KH . PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang D, Brady CA, Johnson TM, Lee EY, Park EJ, Scott MP et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci USA 2011; 108: 17123–17128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffman B, Liebermann DA . Apoptotic signaling by c-MYC. Oncogene 2008; 27: 6462–6472.

    Article  CAS  PubMed  Google Scholar 

  43. Bieging KT, Attardi LD . Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol 2012; 22: 97–106.

    Article  CAS  PubMed  Google Scholar 

  44. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  45. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145: 571–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ . Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552–557.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs GL Kelly, ARD Delbridge, BJ Aubrey, S Cory and JM Adams for discussions and gifts of mice; K Walker, J Mansheim, C Gatt, G Siciliano and S O’Connor for expert animal care; B Helbert, H Ierino, K Mackwell and C Young for help with genotyping; J Corbin and J McManus for automated blood cell analysis. This work was supported by a PhD scholarship and Postdoctoral Fellowships from the Cancer Council of Victoria to SG and LV, by Postdoctoral Fellowships from the Leukaemia Foundation Australia to SG, from the Lady Tata Memorial Trust Research Award to AJ and SG, from the Leukemia & Lymphoma Society of America and the Beatriu de Pinos Foundation to AJ and by grants from Cancer Australia and Cure Cancer Australia Foundation (grant no. 1067571), the National Health and Medical Research Council (NHMRC; program grant no. 1016701, NHMRC Senior Principal Research Fellow (SPRF) Fellowship 1020363 to AS) and the Leukemia & Lymphoma Society of America (Specialized Center of Research (SCOR) grant no. 7001-13). This work was made possible by operational infrastructure grants through the Australian Government Independent Medical Research Institutes Infrastructure Support Scheme (IRIISS) and the Victorian State Government Operational Infrastructure Support (OIS).

Author contributions

LV, SG, AJ and AS conceived the study, planned the experiments, interpreted the results and prepared the manuscript. LV, AJ, CV and SG conducted the majority of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Strasser or A Janic.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valente, L., Grabow, S., Vandenberg, C. et al. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53. Oncogene 35, 3866–3871 (2016). https://doi.org/10.1038/onc.2015.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.457

This article is cited by

Search

Quick links