Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

STAT3 selectively interacts with Smad3 to antagonize TGF-β

An Erratum to this article was published on 27 June 2016

Abstract

Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates transforming growth factor-β (TGF-β)-induced responses through a direct Smad3–STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3–Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3–Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Derynck R, Miyazono K . The TGF-β Family. Cold Spring Harbor Laboratory Press: New York, NY, USA, 2007, pp. 1–1114.

    Google Scholar 

  2. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P . The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10: 554–567.

    Article  CAS  Google Scholar 

  3. Wu MY, Hill CS . TGF-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 2009; 16: 329–343.

    Article  CAS  Google Scholar 

  4. Massagué J . TGFβ in cancer. Cell 2008; 134: 215–230.

    Article  Google Scholar 

  5. Ikushima H, Miyazono K . TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  Google Scholar 

  6. Derynck R, Akhurst RJ, Balmain A . TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  CAS  Google Scholar 

  7. Drabsch Y, ten Dijke P . TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31: 553–568.

    Article  CAS  Google Scholar 

  8. Deheuninck J, Luo K . Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009; 19: 47–57.

    Article  CAS  Google Scholar 

  9. Wang D, Long J, Dai F, Liang M, Feng X-H, Lin X . BCL6 represses Smad signaling in transforming growth factor-beta resistance. Cell Res 2008; 68: 783–789.

    CAS  Google Scholar 

  10. Hirai H, Izutsu K, Kurokawa M, Mitani K . Oncogenic mechanisms of Evi-1 protein. Cancer Chemother Pharmacol 2001; 48: S35–S40.

    Article  CAS  Google Scholar 

  11. Feng X-H, Liang Y-Y, Liang M, Zhai W, Lin X . Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 2002; 9: 133–143.

    Article  CAS  Google Scholar 

  12. Massagué J, Gomis RR . The logic of TGFbeta signaling. FEBS Lett 2006; 580: 2811–2820.

    Article  Google Scholar 

  13. Wrighton KH, Lin X, Feng X-H . Phospho-control of TGF-β superfamily signaling. Cell Res 2009; 19: 8–20.

    Article  CAS  Google Scholar 

  14. Kretzschmar M, Doody J, Timokhina I, Massagué J . A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804–816.

    Article  CAS  Google Scholar 

  15. Feng X-H, Derynck R . Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 659–693.

    Article  CAS  Google Scholar 

  16. Massagué J, Seoane J, Wotton D . Smad transcription factors. Genes Dev Genes Dev 2005; 19: 2783–2810.

    Article  Google Scholar 

  17. Labbé E, Silvestri C, Hoodless PA, Wrana JL, Attisano L . Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998; 2: 109–120.

    Article  Google Scholar 

  18. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M . Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 1997; 389: 85–89.

    Article  CAS  Google Scholar 

  19. Zhang Y, Feng XH, Derynck R . Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 1998; 394: 909–913.

    Article  CAS  Google Scholar 

  20. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  Google Scholar 

  21. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 2006; 25: 2520–2530.

    Article  CAS  Google Scholar 

  22. Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling. Nat Med 2005; 11: 845–852.

    Article  CAS  Google Scholar 

  23. Gunaje JJ, Bhat GJ . Distinct mechanisms of inhibition of interleukin-6-induced Stat3 signaling by TGF-beta and alpha-thrombin in CCL39 cells. Mol Cell Biol Res Commun 2000; 4: 151–157.

    Article  CAS  Google Scholar 

  24. Walia B, Wang L, Merlin D, Sitaraman SV . TGF-beta down-regulates IL-6 signaling in intestinal epithelial cells: critical role of SMAD-2. FASEB J 2003; 17: 2130–2132.

    Article  CAS  Google Scholar 

  25. Zauberman A, Lapter S, Zipori D . Smad proteins suppress CCAAT/enhancer-binding protein (C/EBP) beta- and STAT3-mediated transcriptional activation of the haptoglobin promoter. J Biol Chem 2001; 276: 24719–24725.

    Article  CAS  Google Scholar 

  26. Dunfield LD, Nachtigal MW . Inhibition of the antiproliferative effect of TGFbeta by EGF in primary human ovarian cancer cells. Oncogene 2003; 22: 4745–4751.

    Article  CAS  Google Scholar 

  27. Luwor RB, Baradaran B, Taylor LE, Iaria J, Nheu TV, Amiry N et al. Targeting Stat3 and Smad7 to restore TGF-β cytostatic regulation of tumor cells in vitro and in vivo. Oncogene 2012; 32: 2433–2441.

    Article  Google Scholar 

  28. Feng X-H, Zhang Y, Wu R-Y, Derynck R . The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-beta. Genes Dev 1998; 12: 2153–2163.

    Article  CAS  Google Scholar 

  29. Wierenga ATJ, Schuringa JJ, Eggen BJL, Kruijer W, Vellenga E . Downregulation of IL-6-induced STAT3 tyrosine phosphorylation by TGF-β1 is mediated by caspase-dependent and -independent processes. Leukemia 2002; 16: 675–682.

    Article  CAS  Google Scholar 

  30. Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA et al. Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 2001; 167: 553–561.

    Article  CAS  Google Scholar 

  31. Yamamoto T, Matsuda T, Muraguchi A, Miyazono K, Kawabata M . Cross-talk between IL-6 and TGF-beta signaling in hepatoma cells. FEBS Lett 2001; 492: 247–253.

    Article  CAS  Google Scholar 

  32. Ghosh AK, Yuan W, Mori Y, Sj Chen, Varga J . Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem 2001; 276: 11041–11048.

    Article  CAS  Google Scholar 

  33. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 1999; 284: 479–482.

    Article  CAS  Google Scholar 

  34. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  35. Miyazono K, Suzuki H, Imamura T . Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003; 94: 230–234.

    Article  CAS  Google Scholar 

  36. Ungefroren H, Groth S, Sebens S, Lehnert H, Gieseler F, Fändrich F . Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. Mol Cancer 2011; 10: 67.

    Article  CAS  Google Scholar 

  37. Zheng R, Xiong Q, Zuo B, Jiang S, Li F, Lei M et al. Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biochem Funct 2008; 26: 548–556.

    Article  CAS  Google Scholar 

  38. Huang D, Liu Y, Huang Y, Xie Y, Shen K, Zhang D et al. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 2014; 55: 391–396.

    Article  CAS  Google Scholar 

  39. Kim SG, Kim H-A, Jong H-S, Park J-H, Kim NK, Hong SH et al. The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3. Mol Biol Cell 2005; 16: 4672–4683.

    Article  CAS  Google Scholar 

  40. Schmierer B, Schuster MK, Shkumatava A, Kuchler K . Activin a signaling induces Smad2, but not Smad3, requiring protein kinase a activity in granulosa cells from the avian ovary. J Biol Chem 2003; 278: 21197–21203.

    Article  CAS  Google Scholar 

  41. Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X, Jetten AM et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2009; 284: 35283–35286.

    Article  CAS  Google Scholar 

  42. Martinez GJ, Zhang Z, Reynolds JM, Tanaka S, Chung Y, Liu T et al. Smad2 positively regulates the generation of Th17 cells. J Biol Chem 2010; 285: 29039–29043.

    Article  CAS  Google Scholar 

  43. Han S-U, Kim H-T, Seong DH, Kim Y-S, Park Y-S, Bang Y-J et al. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 2004; 23: 1333–1341.

    Article  CAS  Google Scholar 

  44. Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004; 351: 552–559.

    Article  CAS  Google Scholar 

  45. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238.

    Article  CAS  Google Scholar 

  46. Okita K, Yamanaka S . Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 2006; 1: 103–111.

    Article  CAS  Google Scholar 

  47. Ying QL, Nichols J, Chambers I, Smith A . BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115: 281–292.

    Article  CAS  Google Scholar 

  48. Lin X, Duan X, Liang Y-Y, Su Y, Wrighton KH, Long J et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling. Cell 2006; 125: 915–928.

    Article  CAS  Google Scholar 

  49. Dai F, Lin X, Chang C, Feng X-H . Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dev Cell 2009; 16: 345–357.

    Article  CAS  Google Scholar 

  50. Lin X, Liang Y-Y, Sun B, Liang M, Shi Y, Brunicardi FC et al. Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 2003; 23: 9081–9093.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Luskutoff for p800 (PAI-1)-luc, Peter ten Dijke for CAGA-luc, Bert Vogelstein for WWP1 (p21)-luc and SBE-luc and Xiao-Fan Wang for p15-luc. We are grateful to colleagues in our laboratories for helpful discussion and technical assistance. This research was partly supported by grants from MOST (2012CB966600) and NSFC (31571447; 31090360), NIH (R01GM63773, R01 AR053591, R01CA108454 and R01DK073932), Project 111, Project 985 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-H Feng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yu, Y., Sun, C. et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β. Oncogene 35, 4388–4398 (2016). https://doi.org/10.1038/onc.2015.446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.446

This article is cited by

Search

Quick links