Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop

Abstract

Our previous study reported that Epstein–Barr virus(EBV)-encoded latent membrane protein 1 (LMP1) could induce development of CD44+/High stem-like cells in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms that underlie modulation of cancer stem cells (CSCs) in NPC remain unclear. Here, we show that LMP1 induced CSC-like properties through promotion of the expression of epithelial–mesenchymal transition-like cellular markers and through alterations in differentiation markers. Furthermore, LMP1 activated and triggered phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which subsequently stimulated expression of CSC markers, development of side population and tumor sphere formation. This suggests that PI3K/AKT pathway has an important role in the induction and maintenance of CSC properties in NPC. Similarly, PI3K/AKT pathway was also activated by phosphorylase in LMP1-induced CD44+/High cells. In addition, LMP1 greatly increased expression of miR-21 and downregulated expression of the miR-21 target, PTEN. Overexpression of miR-21 by transfection of miR-21 mimics into LMP1-transformed cells led to phosphorylase-mediated activation of the PI3K/AKT pathway and induction of CSCs. On the contrary, phosphorylation of the PI3K/AKT pathway and the expression of CSC were reversed by an miR-21 inhibitor. The specific inhibitor (Ly294002) of PI3K/AKT pathway significantly decreased expression of miR-21 and CSC markers and upregulated the expression of PTEN, which indicates that miR-21 and PTEN are the downstream effectors of PI3K/AKT and that expression of these two effectors are related to the development of NPC CSCs. Taken together, our novel findings indicate that LMP1, PI3K/AKT, miR-21 and PTEN constitute a positive feedback loop and have a key role in LMP1-induced CSCs in NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chew MM, Gan SY, Khoo AS, Tan EL . Interleukins, laminin and Epstein-Barr virus latent membrane protein 1 (EBV LMP1) promote metastatic phenotype in nasopharyngeal carcinoma. BMC Cancer 2010; 10: 574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Young LS, Rickinson AB . Epstein-Barr virus: 40 years. Nat Rev Cancer 2004; 4: 757–768.

    Article  CAS  PubMed  Google Scholar 

  3. Dawson CW, Port RJ, Young LS . The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22: 144–153.

    Article  CAS  PubMed  Google Scholar 

  4. Yang CF, Peng LX, Yang GD, Yang GD, Chu QQ, Liang YY et al. Cancer stem-like cell characteristics induced by EB virus-encoded LMP1 contribute to radioresistance in nasopharyngeal carcinoma by suppressing the p53-mediated apoptosis pathway. Cancer Lett 2014; 344: 260–271.

    Article  CAS  PubMed  Google Scholar 

  5. Frank NY, Schatton T, Frank MH . The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120: 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prince ME, Ailles LE . Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol 2008; 26: 2871–2875.

    Article  PubMed  Google Scholar 

  7. Chen JZ . Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications. World J Virol 2012; 12: 154–161.

    Article  Google Scholar 

  8. Mainou BA, Everly DN, Raab TN . Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 2005; 24: 6917–6924.

    Article  CAS  PubMed  Google Scholar 

  9. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 2009; 106: 268–273.

    Article  CAS  PubMed  Google Scholar 

  10. Lambert SL, Martinez OM . Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 2007; 179: 8225–8234.

    Article  CAS  PubMed  Google Scholar 

  11. Yi RC, Ming TL, Yu TC, Chung CW, Chi YH, Jen YC . Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 2008; 82: 8124–8137.

    Article  Google Scholar 

  12. Yang GD, Huang TJ, Peng LX, Yang CF, Liu RY, Huang HB et al. Epstein-Barr Virus_Encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and Fas-L. PLoS One 2013; 8: e78355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JW, Liu PF, Hsu LP, Chen PR, Chang CH, Shih WL . EBV LMP-1 negatively regulates expression and pro-apoptotic activity of Par-4 in nasopharyngeal carcinoma cells. Cancer Lett 2009; 279: 193–201.

    Article  CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Article  Google Scholar 

  15. Sendurai AM, Wen JG, Mai JL, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  Google Scholar 

  16. Antonio DC, Pier PP . The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.

    Article  Google Scholar 

  17. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001; 294: 2186–2189.

    CAS  PubMed  Google Scholar 

  18. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  19. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27: 1006–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al. Identifcation of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104: 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  25. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007b; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kondo S, Wakisaka N, Muramatsu M, Zen Y, Endo K, Murono S et al. Epstein-Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. J Virol 2011; 85: 11255–11264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA et al. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 2011; 71: 3087–3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Swapna A, Kiran KV, Chandramu C, Bharathi Go, Jasti SR . Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 2012; 3: 1439–1454.

    Google Scholar 

  29. Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S et al. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 2012; 1826: 272–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adele H, Joanna BW . Evaluation of LMP1 of Epstein-Barr virus as a therapeutic target by its inhibition. Mol Cancer 2010; 9: 184.

    Article  Google Scholar 

  31. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY . CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27: 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  32. Qian CN, Furge KA, Knol J, Huang D, Chen J, Dykema KJ et al. Activation of the PI3K/AKT pathway induces urothelial carcinoma of the renal pelvis: identification in human tumors and confirmation in animal models. Cancer Res 2009; 69: 8256–8264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dubrovska A, Elliott J, Salamone RJ, Kim S, Aimone LJ, Walker JR et al. Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin Cancer Res 2010; 16: 5692–5702.

    Article  CAS  PubMed  Google Scholar 

  34. Lavorgna A, Harhaj EW . EBV LMP1: new and shared pathways to NF-κB activation. Proc Natl Acad Sci USA 2012; 109: 2188–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xishan Z, Xinna Z, Baoxin H, Jun R . Impaired immunomodulatory function of chronic myeloid leukemia cancer stem cells and the possible mechanism involved in it. Cancer Immunol Immunother 2013; 62: 689–703.

    Article  PubMed  Google Scholar 

  36. Chen CC, Chen LC, Liang Y, Tsang NM, Chang YS . Epstein-Barr virus latent membrane protein 1 induces the chemotherapeutic target, thymidine phosphorylase, via NF-kappaB and p38 MAPK pathways. Cell Signal 2010; 22: 1132–1142.

    Article  CAS  PubMed  Google Scholar 

  37. Kutz H, Reisbach G, Schultheiss U, Kieser A . The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus. Virology 2008; 371: 246–256.

    Article  CAS  PubMed  Google Scholar 

  38. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J et al. Upregulation of MIR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286: 19127–19137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng F, Henson R, Wehbe JH, Ghoshal K, Jacob ST, Patel T . MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647–658.

    Article  CAS  PubMed  Google Scholar 

  41. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto C, Basaki Y, Kawahara A, Nakashima K, Kage M, Izumi H et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res 2010; 70: 8715–8725.

    Article  CAS  PubMed  Google Scholar 

  43. Longlong Bao . MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 2013; 337: 226–236.

    Article  PubMed  Google Scholar 

  44. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY . MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18: 350–359.

    Article  CAS  PubMed  Google Scholar 

  45. Castellino RC, Durden DL . Mechanisms of Disease: the PI3K-Akt-PTEN signaling node an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol 2007; 3: 682–693.

    Article  CAS  PubMed  Google Scholar 

  46. Sayed D, He M, Hong C, Gao S, Rane S, Yang Z et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 2010; 285: 20281–20290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J . miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology 2013; 306: 162–168.

    Article  CAS  PubMed  Google Scholar 

  48. Pedrero JM, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS et al. Frequent genetic and biochemical alterations of the PI 3- K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer 2005; 114: 242–248.

    Article  CAS  PubMed  Google Scholar 

  49. Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 2012; 4: 1058–1064.

    Article  Google Scholar 

  50. Selcuklu SD, Donoghue MT, Spillane C . miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 2009; 4: 918–925.

    Article  Google Scholar 

  51. Chung WM, Chang WC, Chen L, Chang YY, Shyr CR, Hung YC et al. MicroRNA-21 promotes the ovarian teratocarcinoma PA1 cell line by sustaining cancer stem/progenitor populations in vitro. Stem Cell Res Ther 2013; 4: 88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant no. 81572901, 31170151, 81272340, 30770108 and 81030043), the Science and Technology Planning Project of Guangdong Province, China (grant no. 2014B020212017, 2014A020209024 and 2009A030331005), the Guangzhou Key Program of Science and Technology (grant no. 2012Y2-00026), the Shenzhen Basic Research Program of Science and Technology R&D (grant no. JC201105170709A and JCYJ20150330102720115), the Guangdong Natural Science Foundation (grant no. 2014A030310029) and the National High Technology Research and Development Program of China (863 Program; No. 2012AA02A501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C-N Qian or B-J Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CF., Yang, GD., Huang, TJ. et al. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop. Oncogene 35, 3419–3431 (2016). https://doi.org/10.1038/onc.2015.402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.402

This article is cited by

Search

Quick links