Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity

Abstract

Heparanase-1 (HPSE) plays a pivotal role in structural remodeling of the ECM and the glycocalyx, thus conferring protumorigenic, proangiogenic and prometastatic properties to many cancer entities. In addition to its extracellular function, recent studies suggest an intracellular activity of HPSE with a largely unknown significance during tumor progression. Therefore, we investigated the relevance of the dual functions of HPSE to malignant melanoma in vitro, as well as in different mouse melanoma models based on the intradermal or intravenous injection of melanoma cells. Consistent with its extracellular action, an HPSE deficiency led to a reduced shedding of the glycocalyx accompanied by a reduced availability of vascular endothelial growth factor, affecting tumor growth and vascularization. In contrast, we measured an elevated expression of the protumorigenic factors pentraxin-3, tissue factor, TNF-α and most prominently, MMP-9, upon HPSE knockdown. In vivo, an HPSE deficiency was related to increased lymph node metastasis. Since the inhibition of its extracellular function with heparin was unable to block the gene regulatory impact of HPSE, we proposed an intracellular mechanism. Immunostaining revealed a counter-staining of HPSE and NF-κB in the nucleus, suggesting a close relationship between both proteins. This finding was further supported by the discovery of a direct charge-driven molecular interaction between HPSE and DNA by using atomic force microscopy and a co-precipitation approach. Our findings are novel and point towards a dual function for HPSE in malignant melanoma with a protumorigenic extracellular activity and a tumor-suppressive nuclear action. The identification of molecular strategies to shuttle extracellular HPSE into the nuclei of cancer cells could provide new therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I et al. Heparanase as mediator of angiogenesis: mode of action. FASEB J 2001; 15: 1661–1663.

    Article  CAS  PubMed  Google Scholar 

  2. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D . Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 1996; 15: 177–186.

    Article  CAS  PubMed  Google Scholar 

  3. Zong F, Fthenou E, Wolmer N, Hollosi P, Kovalszky I, Szilak L et al. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS ONE 2009; 4: e7346.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD . Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 2011; 286: 30377–30383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Purushothaman A, Chen L, Yang Y, Sanderson RD . Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 2008; 283: 32628–32636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bond M, Fabunmi RP, Baker AH, Newby AC . Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. Febs Lett 1998; 435: 29–34.

    Article  CAS  PubMed  Google Scholar 

  7. Farina AR, Tacconelli A, Vacca A, Maroder M, Gulino A, Mackay AR . Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements. Cell Growth Differ 1999; 10: 353–367.

    CAS  PubMed  Google Scholar 

  8. Andela VB, Schwarz EM, Puzas JE, O'Keefe RJ, Rosier RN . Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Res 2000; 60: 6557–6562.

    CAS  PubMed  Google Scholar 

  9. Cao HJ, Fang Y, Zhang X, Chen WJ, Zhou WP, Wang H et al. Tumor metastasis and the reciprocal regulation of heparanase gene expression by nuclear factor kappa B in human gastric carcinoma tissue. World J Gastroenterol 2005; 11: 903–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu W, Pan C, Meng K, Zhao L, Du L, Liu Q et al. Hypoxia activates heparanase expression in an NF-kappaB dependent manner. Oncol Rep 2010; 23: 255–261.

    Article  CAS  PubMed  Google Scholar 

  11. Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N . Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem 2004; 279: 23536–23541.

    Article  CAS  PubMed  Google Scholar 

  12. Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N . Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 2006; 66: 1455–1463.

    Article  CAS  PubMed  Google Scholar 

  13. Ilan N, Elkin M, Vlodavsky I . Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38: 2018–2039.

    Article  CAS  PubMed  Google Scholar 

  14. Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I . Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 2010; 277: 3890–3903.

    Article  CAS  PubMed  Google Scholar 

  15. Boyango I, Barash U, Naroditsky I, Li JP, Hammond E, Ilan N et al. Heparanase cooperates with Ras to drive breast and skin tumorigenesis. Cancer Res 2014; 74: 4504–4514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen-Kaplan V, Jrbashyan J, Yanir Y, Naroditsky I, Ben-Izhak O, Ilan N et al. Heparanase induces signal transducer and activator of transcription (STAT) protein phosphorylation: preclinical and clinical significance in head and neck cancer. J Biol Chem 2012; 287: 6668–6678.

    Article  CAS  PubMed  Google Scholar 

  17. Roy M, Reiland J, Murry BP, Chouljenko V, Kousoulas KG, Marchetti D . Antisense-mediated suppression of Heparanase gene inhibits melanoma cell invasion. Neoplasia 2005; 7: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu XY, Tang QS, Chen HC, Jiang XL, Fang H . Lentiviral miR30-based RNA interference against heparanase suppresses melanoma metastasis with lower liver and lung toxicity. Int J Biol Sci 2013; 9: 564–577.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Fang H, Chen H, Jiang X, Fang D, Wang Y et al. An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS ONE 2012; 7: e38659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desch A, Strozyk EA, Bauer AT, Huck V, Niemeyer V, Wieland T et al. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. Am J Pathol 2012; 181: 693–705.

    Article  CAS  PubMed  Google Scholar 

  21. Kerk N, Strozyk EA, Poppelmann B, Schneider SW . The mechanism of melanoma-associated thrombin activity and von Willebrand factor release from endothelial cells. J Invest Dermatol 2010; 130: 2259–2268.

    Article  CAS  PubMed  Google Scholar 

  22. Zak J, Schneider SW, Eue I, Ludwig T, Oberleithner H . High-resistance MDCK-C7 monolayers used for measuring invasive potency of tumour cells. Pflugers Arch 2000; 440: 179–183.

    Article  CAS  PubMed  Google Scholar 

  23. Ludwig T, Ossig R, Graessel S, Wilhelmi M, Oberleithner H, Schneider SW . The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion. Am J Physiol Renal Physiol 2002; 283: F319–F327.

    Article  CAS  PubMed  Google Scholar 

  24. Schnaeker EM, Ossig R, Ludwig T, Dreier R, Oberleithner H, Wilhelmi M et al. Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: prerequisite in human melanoma cell invasion. Cancer Res 2004; 64: 8924–8931.

    Article  CAS  PubMed  Google Scholar 

  25. Bauer AT, Burgers HF, Rabie T, Marti HH . Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 2010; 30: 837–848.

    Article  CAS  PubMed  Google Scholar 

  26. Vlodavsky I, Abboud-Jarrous G, Elkin M, Naggi A, Casu B, Sasisekharan R et al. The impact of heparanese and heparin on cancer metastasis and angiogenesis. Pathophysiol Haemost Thromb 2006; 35: 116–127.

    Article  PubMed  Google Scholar 

  27. Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA . Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 1998; 6: 637–648.

    Article  CAS  PubMed  Google Scholar 

  28. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    Article  CAS  PubMed  Google Scholar 

  29. Gorzelanny C, Poppelmann B, Strozyk E, Moerschbacher BM, Schneider SW . Specific interaction between chitosan and matrix metalloprotease 2 decreases the invasive activity of human melanoma cells. Biomacromolecules 2007; 8: 3035–3040.

    Article  CAS  PubMed  Google Scholar 

  30. Hostettler N, Naggi A, Torri G, Ishai-Michaeli R, Casu B, Vlodavsky I et al. P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB J 2007; 21: 3562–3572.

    Article  CAS  PubMed  Google Scholar 

  31. Carrer A, Moimas S, Zacchigna S, Pattarini L, Zentilin L, Ruozi G et al. Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res 2012; 72: 6371–6381.

    Article  CAS  PubMed  Google Scholar 

  32. Jain RK . Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987–989.

    Article  CAS  PubMed  Google Scholar 

  33. Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K et al. Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol 2004; 87: 174–181.

    Article  CAS  PubMed  Google Scholar 

  34. Shinyo Y, Kodama J, Hongo A, Yoshinouchi M, Hiramatsu Y . Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol 2003; 14: 1505–1510.

    Article  CAS  PubMed  Google Scholar 

  35. Kelly T, Miao HQ, Yang Y, Navarro E, Kussie P, Huang Y et al. High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 2003; 63: 8749–8756.

    CAS  PubMed  Google Scholar 

  36. Van Muijen GN, Cornelissen LM, Jansen CF, Figdor CG, Johnson JP, Brocker EB et al. Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin Exp Metastasis 1991; 9: 259–272.

    Article  CAS  PubMed  Google Scholar 

  37. van Muijen GN, Jansen KF, Cornelissen IM, Smeets DF, Beck JL, Ruiter DJ . Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int J Cancer 1991; 48: 85–91.

    Article  CAS  PubMed  Google Scholar 

  38. Aubert C, Rouge F, Galindo JR . Tumorigenicity of human malignant melanocytes in nude mice in relation to their differentiation in vitro. J Natl Cancer Inst 1980; 64: 1029–1040.

    CAS  PubMed  Google Scholar 

  39. Murphy G, Nagase H . Progress in matrix metalloproteinase research. Mol Aspects Med 2008; 29: 290–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goerge T, Barg A, Schnaeker EM, Poppelmann B, Shpacovitch V, Rattenholl A et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res 2006; 66: 7766–7774.

    Article  CAS  PubMed  Google Scholar 

  41. Vlodavsky I, Mohsen M, Lider O, Svahn CM, Ekre HP, Vigoda M et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 1994; 14: 290–302.

    CAS  PubMed  Google Scholar 

  42. Roy M, Marchetti D . Cell surface heparan sulfate released by heparanase promotes melanoma cell migration and angiogenesis. J Cell Biochem 2009; 106: 200–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T et al. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 2009; 4: e5181.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Strozyk EA, Desch A, Poeppelmann B, Magnolo N, Wegener J, Huck V et al. Melanoma-derived IL-1 converts vascular endothelium to a proinflammatory and procoagulatory phenotype via NFkappaB activation. Exp Dermatol 2014; 23: 670–676.

    Article  CAS  PubMed  Google Scholar 

  45. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A . Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 2001; 7: 285–289.

    CAS  PubMed  Google Scholar 

  46. Borczuk AC, Papanikolaou N, Toonkel RL, Sole M, Gorenstein LA, Ginsburg ME et al. Lung adenocarcinoma invasion in TGFbetaRII-deficient cells is mediated by CCL5/RANTES. Oncogene 2008; 27: 557–564.

    Article  CAS  PubMed  Google Scholar 

  47. Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol 2004; 22: 617–623.

    Article  CAS  PubMed  Google Scholar 

  48. Oeth PA, Parry GC, Kunsch C, Nantermet P, Rosen CA, Mackman N . Lipopolysaccharide induction of tissue factor gene expression in monocytic cells is mediated by binding of c-Rel/p65 heterodimers to a kappa B-like site. Mol Cell Biol 1994; 14: 3772–3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coward WR, Okayama Y, Sagara H, Wilson SJ, Holgate ST, Church MK . NF-kappa B and TNF-alpha: a positive autocrine loop in human lung mast cells? J Immunol 2002; 169: 5287–5293.

    Article  PubMed  Google Scholar 

  50. Basile A, Sica A, d'Aniello E, Breviario F, Garrido G, Castellano M et al. Characterization of the promoter for the human long pentraxin PTX3. Role of NF-kappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem 1997; 272: 8172–8178.

    Article  CAS  PubMed  Google Scholar 

  51. Hong X, Nelson K, Lemke N, Kalkanis SN . Heparanase expression is associated with histone modifications in glioblastoma. Int J Oncol 2012; 40: 494–500.

    CAS  PubMed  Google Scholar 

  52. Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O . Human heparanase nuclear localization and enzymatic activity. Lab Invest 2004; 84: 535–544.

    Article  CAS  PubMed  Google Scholar 

  53. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I . Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 2006; 8: 1055–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hart IR . The selection and characterization of an invasive variant of the B16 melanoma. Am J Pathol 1979; 97: 587–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao F, Falk C, Osen W, Kato M, Schadendorf D, Umansky V . Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clin Cancer Res 2009; 15: 4382–4390.

    Article  CAS  PubMed  Google Scholar 

  56. Gekle M, Wunsch S, Oberleithner H, Silbernagl S . Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Arch 1994; 428: 157–162.

    Article  CAS  PubMed  Google Scholar 

  57. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ . Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991; 15: 621–628.

    Article  CAS  PubMed  Google Scholar 

  58. Merz M, Komljenovic D, Zwick S, Semmler W, Bauerle T . Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur J Cancer 2011; 47: 277–286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Katja Oehme for the excellent technical help and advice in dynamic contrast-enhanced magnetic resonance imaging experiments. We acknowledge Prof. Viktor Umansky (Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany) for providing a melanoma cell line from ret transgenic mice. This work was supported by the Deutsche Forschungsgemeinschaft within the SFB/Transregio 23 (project A9 to SWS, project Z1 to DK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S W Schneider.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gorzelanny, C., Bauer, A. et al. Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity. Oncogene 34, 5832–5842 (2015). https://doi.org/10.1038/onc.2015.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.40

This article is cited by

Search

Quick links