Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Targeting tumor–stroma crosstalk: the example of the NT157 inhibitor

Abstract

Recent clinical research has provided evidence that cancer progression and therapy resistance is driven not only by tumor’s genetic profile but also by complex paracrine interactions within the tumor microenvironment (TME). The role of TME in modulating tumor drug sensitivity is increasingly recognized and targeting TME has been the focus of novel therapeutic approaches. Two recent reports show that a new anti-cancer drug, the inhibitor NT157 has the potential to inhibit IGF-1R and STAT3 signaling pathways in cancer cells and stroma cells of TME leading to a decrease in cancer cell survival.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y . Tumor microenvironment and cancer therapy resistance. Cancer Lett 2015, e-pub ahead of print 10 August 2015 doi:10.1016/j.canlet.2015.07.044.

    Article  CAS  PubMed  Google Scholar 

  3. Tlsty TD, Hein PW . Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 2001; 11: 54–59.

    Article  CAS  PubMed  Google Scholar 

  4. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    Article  CAS  PubMed  Google Scholar 

  5. Ruffell B, Coussens LM . Macrophages and therapeutic resistance in cancer. Cancer cell 2015; 27: 462–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  8. Flashner-Abramson E, Klein S, Mullin G, Shoshan E, Song R, Shir A et al. Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling. Oncogene 2015, e-pub ahead of print 29 June 2015 doi:10.1038/onc.2015.229.

    Article  PubMed  Google Scholar 

  9. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene 2015, e-pub ahead of print 14 September 2015 doi:10.1038/onc.2015.326.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stebbing J, Zhang H, Xu Y, Grothey A, Ajuh P, Angelopoulos N et al. Reprogramming of the tyrosine kinase-regulated proteome in breast cancer by combined use of RNAi and SILAC quantitative proteomics. Mol Cell Proteomics 2015; 14: 2479–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.

    Article  CAS  PubMed  Google Scholar 

  12. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 2014; 5: 3472.

    Article  PubMed  Google Scholar 

  13. Castano Z, Marsh T, Tadipatri R, Kuznetsov HS, Al-Shahrour F, Paktinat M et al. Stromal EGF and igf-I together modulate plasticity of disseminated triple-negative breast tumors. Cancer Discov 2013; 3: 922–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee C, Jia Z, Rahmatpanah F, Zhang Q, Zi X, McClelland M et al. Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-beta and IGF signaling. BioMed Res Int 2014; 2014: 502093.

    PubMed  PubMed Central  Google Scholar 

  15. Kawada M, Inoue H, Masuda T, Ikeda D . Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Res 2006; 66: 4419–4425.

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Jove R . The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 2004; 4: 97–105.

    Article  CAS  PubMed  Google Scholar 

  17. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 2007; 67: 9721–9730.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Action Against Cancer for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Rampias or G Giamas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampias, T., Favicchio, R., Stebbing, J. et al. Targeting tumor–stroma crosstalk: the example of the NT157 inhibitor. Oncogene 35, 2562–2564 (2016). https://doi.org/10.1038/onc.2015.392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.392

This article is cited by

Search

Quick links