Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Somatic human ZBTB7A zinc finger mutations promote cancer progression

Abstract

We recently reported that ZBTB7A is a bona fide transcription repressor of key glycolytic genes and its downregulation in human cancer contributes to tumor metabolism. As reduced expression of ZBTB7A is found only in a subset of human cancers, we explored alternative mechanisms of its inactivation by mining human cancer genome databases. We discovered recurrent somatic mutations of ZBTB7A in multiple types of human cancers with a marked enrichment of mutations within the zinc finger domain. Functional characterization of the mutants demonstrated that mutations within the zinc finger region of ZBTB7A invariably resulted in loss of function. As a consequence, the glycolytic genes were markedly upregulated in cancer cells harboring ZBTB7A zinc finger mutation, leading to increased glycolysis and proliferation. Our study uncovers the loss-of-function mutation in ZBTB7A as a novel mechanism causing elevated glycolysis in human cancer, which carries important therapeutic implication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Maeda T, Hobbs RM, Merghoub T, Guernah I, Zelent A, Cordon-Cardo C et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 2005; 433: 278–285.

    Article  CAS  PubMed  Google Scholar 

  2. Pessler F, Pendergrast PS, Hernandez N . Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts. Mol Cell Biol 1997; 17: 3786–3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu CJ, Prazak L, Fajardo M, Yu S, Tyagi N, Di Cesare PE . Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J Biol Chem 2004; 279: 47081–47091.

    Article  CAS  PubMed  Google Scholar 

  4. Kukita A, Kukita T, Ouchida M, Maeda H, Yatsuki H, Kohashi O . Osteoclast-derived zinc finger (OCZF) protein with POZ domain, a possible transcriptional repressor, is involved in osteoclastogenesis. Blood 1999; 94: 1987–1997.

    CAS  PubMed  Google Scholar 

  5. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG . Sequence and structural analysis of BTB domain proteins. Genome Biol 2005; 6: R82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee SU, Maeda T . POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function. Immunol Rev 2012; 247: 107–119.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kelly KF, Daniel JM . POZ for effect—POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006; 16: 578–587.

    Article  CAS  PubMed  Google Scholar 

  8. Costoya JA . Functional analysis of the role of POK transcriptional repressors. Brief Funct Genomic Proteomic 2007; 6: 8–18.

    Article  CAS  PubMed  Google Scholar 

  9. Lo Coco F, Ye BH, Lista F, Corradini P, Offit K, Knowles DM et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin's lymphoma. Blood 1994; 83: 1757–1759.

    CAS  PubMed  Google Scholar 

  10. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY et al. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993; 12: 1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeda T, Merghoub T, Hobbs RM, Dong L, Maeda M, Zakrzewski J et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 2007; 316: 860–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maeda T, Ito K, Merghoub T, Poliseno L, Hobbs RM, Wang G et al. LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev Cell 2009; 17: 527–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakurai N, Maeda M, Lee SU, Ishikawa Y, Li M, Williams JC et al. The LRF transcription factor regulates mature B cell development and the germinal center response in mice. J Clin Invest 2011; 121: 2583–2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45: 1134–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang G, Lunardi A, Zhang J, Chen Z, Ala U, Webster KA et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet 2013; 45: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM et al. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 2014; 28: 1917–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. International Cancer Genome Consortium. International network of cancer genome projects. Nature 2010; 464: 993–998.

    Article  Google Scholar 

  20. Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013; 45: 1113–1120.

    Article  PubMed Central  Google Scholar 

  21. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  22. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39: D945–D950.

    Article  CAS  PubMed  Google Scholar 

  23. Carnero A, Hudson JD, Price CM, Beach DH . p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson JD, Denisenko O, Bomsztyk K . Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006; 1: 179–185.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to current and former members of the Yuan lab for experimental support, advice and helpful discussions. This work was supported in part by the Morningside Foundation and grants from NIH/NCI (R01CA085679, RO1CA167814 and RO1CA125144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-M Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XS., Liu, Z., Gerarduzzi, C. et al. Somatic human ZBTB7A zinc finger mutations promote cancer progression. Oncogene 35, 3071–3078 (2016). https://doi.org/10.1038/onc.2015.371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.371

This article is cited by

Search

Quick links