Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150

Subjects

Abstract

SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Cabrita MA, Christofori G . Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11: 53–62.

    Article  CAS  PubMed  Google Scholar 

  2. Masoumi-Moghaddam S, Amini A, Morris DL . The developing story of Sprouty and cancer. Cancer Metastasis Rev 2014; 33: 695–720.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Egan JE, Hall AB, Yatsula BA, Bar-Sagi D . The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci USA 2002; 99: 6041–6046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y . Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 2003; 13: 297–307.

    Article  CAS  PubMed  Google Scholar 

  5. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 2002; 21: 4796–4808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haglund K, Schmidt MH, Wong ES, Guy GR, Dikic I . Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep 2005; 6: 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbachano A, Ordonez-Moran P, Garcia JM, Sanchez A, Pereira F, Larriba MJ et al. SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene 2010; 29: 4800–4813.

    Article  CAS  PubMed  Google Scholar 

  8. Holgren C, Dougherty U, Edwin F, Cerasi D, Taylor I, Fichera A et al. Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: SPROUTY/c-Met upregulation in human colonic adenocarcinomas. Oncogene 2010; 29: 5241–5253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K et al. Differential gene expression signatures between colorectal cancers with and without KRAS mutations: crosstalk between the KRAS pathway and other signalling pathways. Eur J Cancer 2011; 47: 1946–1954.

    Article  CAS  PubMed  Google Scholar 

  10. Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF et al. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 2004; 64: 5556–5559.

    Article  CAS  PubMed  Google Scholar 

  11. Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D et al. Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 2005; 26: 1224–1232.

    CAS  PubMed  Google Scholar 

  12. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ordonez-Moran P, Irmisch A, Barbachano A, Chicote I, Tenbaum S, Landolfi S et al. SPROUTY2 is a beta-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer. Oncogene 2014; 33: 1975–1985.

    Article  CAS  PubMed  Google Scholar 

  14. Feng YH, Wu CL, Tsao CJ, Chang JG, Lu PJ, Yeh KT et al. Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: correlation with the clinical stage of the disease. Cancer Biol Ther 2011; 11: 111–121.

    Article  CAS  PubMed  Google Scholar 

  15. McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R et al. Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene 2005; 24: 2166–2174.

    Article  CAS  PubMed  Google Scholar 

  16. Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 2006; 66: 2048–2058.

    Article  CAS  PubMed  Google Scholar 

  17. Sánchez A, Setien F, Martínez N, Oliva JL, Herranz M, Fraga MF et al. Epigenetic inactivation of the ERK inhibitor Spry2 in B-cell diffuse lymphomas. Oncogene 2008; 27: 4969–4972.

    Article  PubMed  Google Scholar 

  18. Frank MJ, Dawson DW, Bensinger SJ, Hong JS, Knosp WM, Xu L et al. Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood 2009; 113: 2478–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faratian D, Sims AH, Mullen P, Kay C, Um I, Langdon SP et al. Sprouty 2 is an independent prognostic factor in breast cancer and may be useful in stratifying patients for trastuzumab therapy. PLoS One 2011; 6: e23772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K et al. Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 2010; 107: 4200–4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J et al. Sprouty: how does the branch manager work? J Cell Sci 2003; 116: 3061–3068.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Brunton VG, Burgar HR, Wheldon LM, Heath JK, FRS2-dependent SRC . activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci 2004; 117: 6007–6017.

    Article  CAS  PubMed  Google Scholar 

  23. DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D . Regulation of Sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 2006; 26: 1898–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edwin F, Anderson K, Patel TB . HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 2010; 285: 255–264.

    Article  CAS  PubMed  Google Scholar 

  25. Dhawan P, Singh AB, Deane NG, No Y, Shiou S-R, Schmidt C et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005; 115: 1765–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee M, Vasioukhin V . Cell polarity and cancer—cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 2008; 121: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  27. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 2008; 68: 537–544.

    Article  CAS  PubMed  Google Scholar 

  28. List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A et al. Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 2009; 175: 1453–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Gun BT, Huisman C, Stolzenburg S, Kazemier HG, Ruiters MH, Blancafort P et al. Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer. Br J Cancer 2013; 108: 881–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H et al. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol 2012; 371: 136–145.

    Article  CAS  PubMed  Google Scholar 

  31. Wu CJ, Mannan P, Lu M, Udey MC . Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem 2013; 288: 12253–12268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011; 121: 1064–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Warzecha CC, Carstens RP . Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 2012; 22: 417–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett 2011; 300: 66–78.

    Article  CAS  PubMed  Google Scholar 

  35. Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S et al. TGF-beta drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene 2012; 31: 3190–3201.

    Article  CAS  PubMed  Google Scholar 

  36. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  PubMed  Google Scholar 

  37. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  38. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  41. Ozaki K, Miyazaki S, Tanimura S, Kohno M . Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J Cell Sci 2005; 118: 5861–5871.

    Article  CAS  PubMed  Google Scholar 

  42. Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 2011; 286: 12024–12032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin-Belmonte F, Perez-Moreno M . Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2012; 12: 23–38.

    Article  CAS  Google Scholar 

  44. Bornholdt J, Friis S, Godiksen S, Poulsen SS, Santoni-Rugiu E, Bisgaard HC et al. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis. BMC Cancer 2011; 11: 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 2008; 68: 4258–4268.

    Article  CAS  PubMed  Google Scholar 

  46. Nakayama F, Semba S, Usami Y, Chiba H, Sawada N, Yokozaki H . Hypermethylation-modulated downregulation of claudin-7 expression promotes the progression of colorectal carcinoma. Pathobiology 2008; 75: 177–185.

    Article  CAS  PubMed  Google Scholar 

  47. Merikallio H, Kaarteenaho R, Paakko P, Lehtonen S, Hirvikoski P, Makitaro R et al. Zeb1 and twist are more commonly expressed in metastatic than primary lung tumours and show inverse associations with claudins. J Clin Pathol 2011; 64: 136–140.

    Article  PubMed  Google Scholar 

  48. Swat A, Dolado I, Rojas JM, Nebreda AR . Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol 2009; 29: 3332–3343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene 2012; 31: 4923–4934.

    Article  CAS  PubMed  Google Scholar 

  50. de Alvaro C, Martinez N, Rojas JM, Lorenzo M . Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 2005; 16: 4454–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kohno Y, Okamoto T, Ishibe T, Nagayama S, Shima Y, Nishijo K et al. Expression of claudin7 is tightly associated with epithelial structures in synovial sarcomas and regulated by an Ets family transcription factor, ELF3. J Biol Chem 2006; 281: 38941–38950.

    Article  CAS  PubMed  Google Scholar 

  52. Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordonez-Moran P, Navarro D et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 2007; 28: 1877–1884.

    Article  CAS  PubMed  Google Scholar 

  53. Punzon I, Criado LM, Serrano A, Serrano F, Bernad A . Highly efficient lentiviral-mediated human cytokine transgenesis on the NOD/Scid background. Blood 2004; 103: 580–582.

    Article  CAS  PubMed  Google Scholar 

  54. Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, Braun KM et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 2005; 9: 121–131.

    Article  CAS  PubMed  Google Scholar 

  55. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18: 892–901.

    Article  CAS  PubMed  Google Scholar 

  56. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  57. Risueno A, Fontanillo C, Dinger ME, De Las Rivas J . GATExplorer: genomic and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinform 2010; 11: 221.

    Article  Google Scholar 

  58. R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2010.

  59. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125: 279–284.

    Article  CAS  PubMed  Google Scholar 

  61. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs G Goodall, T Brabletz and A García de Herreros for kindly providing us reagents, T Martínez and X Langa for technical assistance and Robin Rycroft for help with the English manuscript. This study was supported by the Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) (grant SAF2013-43468-R to AM, SAF2011-29530 to FXR); FEDER-Instituto de Salud Carlos III (RD12/0036/0021 to AM and JMR, RD12/0036/0034 to FXR, RD12/0036/0016 to MS, RD12/0036/0012 to HGP, RD06/0020/0003, PS09/00562 and PI13/00703 to JMR); Comunidad de Madrid (S2010/BMD-2344 Colomics2 to AM); Fundación Científica de la Asociación Española contra el Cáncer (to JMR); US Department of Defense (CA093471 and CA110602 to EH); National Institutes of Health/National Cancer Institute (1R01CA155234-01 to EH); National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (1R21AR062239-01 to EH); and the Melanoma Research Alliance (to EH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Muñoz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbáchano, A., Fernández-Barral, A., Pereira, F. et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene 35, 2991–3003 (2016). https://doi.org/10.1038/onc.2015.366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.366

This article is cited by

Search

Quick links