Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes

Subjects

Abstract

Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22: 1760–1774.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    CAS  Google Scholar 

  4. Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M et al. The human transcriptome across tissues and individuals. Science 2015; 348: 660–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lappalainen T, Sammeth M, Friedlander MR, 't Hoen PA, Monlong J, Rivas MA et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013; 501: 506–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Blencowe BJ . Alternative splicing: new insights from global analyses. Cell 2006; 126: 37–47.

    CAS  PubMed  Google Scholar 

  7. Nacu S, Yuan W, Kan Z, Bhatt D, Rivers CS, Stinson J et al. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med Genomics 2011; 4: 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koscielny G, Le Texier V, Gopalakrishnan C, Kumanduri V, Riethoven JJ, Nardone F et al. ASTD: the alternative splicing and transcript diversity database. Genomics 2009; 93: 213–220.

    CAS  PubMed  Google Scholar 

  9. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO . Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7: e30733.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Flouriot G, Brand H, Seraphin B, Gannon F . Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. J Biol Chem 2002; 277: 26244–26251.

    CAS  PubMed  Google Scholar 

  11. Li H, Wang J, Mor G, Sklar J . A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008; 321: 1357–1361.

    CAS  PubMed  Google Scholar 

  12. Dixon RJ, Eperon IC, Samani NJ . Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression. Bioinformatics 2007; 23: 150–155.

    CAS  PubMed  Google Scholar 

  13. Finta C, Zaphiropoulos PG . The human CYP2C locus: a prototype for intergenic and exon repetition splicing events. Genomics 2000; 63: 433–438.

    CAS  PubMed  Google Scholar 

  14. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ . Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40: 1413–1415.

    CAS  PubMed  Google Scholar 

  15. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456: 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saltzman AL, Pan Q, Blencowe BJ . Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev 2011; 25: 373–384.

    PubMed  PubMed Central  Google Scholar 

  17. Bland CS, Wang ET, Vu A, David MP, Castle JC, Johnson JM et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res 2010; 38: 7651–7664.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21: 1636–1652.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazin P, Xiong J, Liu X, Yan Z, Zhang X, Li M et al. Widespread splicing changes in human brain development and aging. Mol Syst Biol 2013; 9: 633.

    PubMed  PubMed Central  Google Scholar 

  20. Xu Q, Modrek B, Lee C . Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 2002; 30: 3754–3766.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeo G, Holste D, Kreiman G, Burge CB . Variation in alternative splicing across human tissues. Genome Biol 2004; 5: R74.

    PubMed  PubMed Central  Google Scholar 

  22. Gonzalez-Porta M, Frankish A, Rung J, Harrow J, Brazma A . Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 2013; 14: R70.

    PubMed  PubMed Central  Google Scholar 

  23. Clark TA, Schweitzer AC, Chen TX, Staples MK, Lu G, Wang H et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 2007; 8: R64.

    PubMed  PubMed Central  Google Scholar 

  24. Pan Q, Shai O, Misquitta C, Zhang W, Saltzman AL, Mohammad N et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16: 929–941.

    CAS  PubMed  Google Scholar 

  25. Elliott DJ, Grellscheid SN . Alternative RNA splicing regulation in the testis. Reproduction 2006; 132: 811–819.

    CAS  PubMed  Google Scholar 

  26. Grosso AR, Gomes AQ, Barbosa-Morais NL, Caldeira S, Thorne NP, Grech G et al. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res 2008; 36: 4823–4832.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302: 2141–2144.

    CAS  PubMed  Google Scholar 

  28. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    CAS  PubMed  Google Scholar 

  29. Nilsen TW, Graveley BR . Expansion of the eukaryotic proteome by alternative splicing. Nature 2010; 463: 457–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M et al. Function of alternative splicing. Gene 2013; 514: 1–30.

    CAS  PubMed  Google Scholar 

  31. Lewis BP, Green RE, Brenner SE . Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003; 100: 189–192.

    CAS  PubMed  Google Scholar 

  32. McGlincy NJ, Smith CW . Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 2008; 33: 385–393.

    CAS  PubMed  Google Scholar 

  33. Weischenfeldt J, Waage J, Tian G, Zhao J, Damgaard I, Jakobsen JS et al. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. Genome Biol 2012; 13: R35.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Melamud E, Moult J . Stochastic noise in splicing machinery. Nucleic Acids Res 2009; 37: 4873–4886.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pickrell JK, Pai AA, Gilad Y, Pritchard JK . Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet 2010; 6: e1001236.

    PubMed  PubMed Central  Google Scholar 

  36. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 2009; 19: 1316–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Faustino NA, Cooper TA . Pre-mRNA splicing and human disease. Genes Dev 2003; 17: 419–437.

    CAS  PubMed  Google Scholar 

  38. Garcia-Blanco MA, Baraniak AP, Lasda EL . Alternative splicing in disease and therapy. Nat Biotechnol 2004; 22: 535–546.

    CAS  PubMed  Google Scholar 

  39. Singh RK, Cooper TA . Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 2012; 18: 472–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Venables JP . Aberrant and alternative splicing in cancer. Cancer Res 2004; 64: 7647–7654.

    CAS  PubMed  Google Scholar 

  41. Ladomery M . Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013; 2013: 463786.

    PubMed  PubMed Central  Google Scholar 

  42. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  43. Oltean S, Bates DO . Hallmarks of alternative splicing in cancer. Oncogene 2014; 33: 5311–5318.

    CAS  PubMed  Google Scholar 

  44. Ladomery MR, Harper SJ, Bates DO . Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 2007; 249: 133–142.

    CAS  PubMed  Google Scholar 

  45. Bauman JA, Li SD, Yang A, Huang L, Kole R . Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 2010; 38: 8348–8356.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    CAS  PubMed  Google Scholar 

  47. Matos P, Jordan P . Increased Rac1b expression sustains colorectal tumor cell survival. Mol Cancer Res 2008; 6: 1178–1184.

    CAS  PubMed  Google Scholar 

  48. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P et al. The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. Oncogene 2013; 32: 903–909.

    CAS  PubMed  Google Scholar 

  49. Venables JP . Unbalanced alternative splicing and its significance in cancer. Bioessays 2006; 28: 378–386.

    CAS  PubMed  Google Scholar 

  50. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436: 123–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Surget S, Khoury MP, Bourdon JC . Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 2013; 7: 57–68.

    PubMed  PubMed Central  Google Scholar 

  52. Hirschi B, Kolligs FT . Alternative splicing of BRAF transcripts and characterization of C-terminally truncated B-Raf isoforms in colorectal cancer. Int J Cancer 2013; 133: 590–596.

    CAS  PubMed  Google Scholar 

  53. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Weiss WA . Alternative splicing in cancer: implications for biology and therapy. Oncogene 2015; 34: 1–14.

    PubMed  Google Scholar 

  55. David CJ, Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010; 24: 2343–2364.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fackenthal JD, Godley LA . Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 2008; 1: 37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim YJ, Kim HS . Alternative splicing and its impact as a cancer diagnostic marker. Genomics Inf 2012; 10: 74–80.

    PubMed Central  Google Scholar 

  58. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM . Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 2007; 8: 349–357.

    CAS  PubMed  Google Scholar 

  59. Skotheim RI, Nees M . Alternative splicing in cancer: Noise, functional, or systematic? Int J Biochem Cell Biol 2007; 39: 1432–1449.

    CAS  PubMed  Google Scholar 

  60. Zhang J, Manley JL . Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 2013; 3: 1228–1237.

    CAS  PubMed  Google Scholar 

  61. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2011; 39: D945–D950.

    CAS  PubMed  Google Scholar 

  62. He C, Zhou F, Zuo Z, Cheng H, Zhou R . A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS One 2009; 4: e4732.

    PubMed  PubMed Central  Google Scholar 

  63. French PJ, Peeters J, Horsman S, Duijm E, Siccama I, van den Bent MJ et al. Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. Cancer Res 2007; 67: 5635–5642.

    CAS  PubMed  Google Scholar 

  64. Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J et al. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 2006; 7: 325.

    PubMed  PubMed Central  Google Scholar 

  65. Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis. Mol Cell Proteomics 2008; 7: 1214–1224.

    CAS  PubMed  Google Scholar 

  66. Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36: 6535–6547.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bemmo A, Benovoy D, Kwan T, Gaffney DJ, Jensen RV, Majewski J . Gene expression and isoform variation analysis using Affymetrix Exon Arrays. BMC Genomics 2008; 9: 529.

    PubMed  PubMed Central  Google Scholar 

  68. Lapuk A, Marr H, Jakkula L, Pedro H, Bhattacharya S, Purdom E et al. Exon-level microarray analyses identify alternative splicing programs in breast cancer. Mol Cancer Res 2010; 8: 961–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. National Cancer Institute, National Human Genome Research Institute. The Cancer Genome Atlas. Available at http://cancergenome.nih.gov/.

  70. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR et al. International network of cancer genome projects. Nature 2010; 464: 993–998.

    CAS  PubMed  Google Scholar 

  71. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K et al. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 2013; 3: 1689.

    PubMed  PubMed Central  Google Scholar 

  72. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7: e1002218.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 2014; 24: 212–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K et al. Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 2015; 11: e1004105.

    PubMed  PubMed Central  Google Scholar 

  75. Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 2014; 9: e87361.

    PubMed  PubMed Central  Google Scholar 

  76. Sebestyén E, Zawisza M, Eyras E . Recurrent alternative splicing isoform switches in tumor samples provide novel signatures of cancer. Nucleic Acids Res 2015; 43: 1345–1356.

    PubMed  PubMed Central  Google Scholar 

  77. Dorman SN, Viner C, Rogan PK . Splicing mutation analysis reveals previously unrecognized pathways in lymph node-invasive breast cancer. Sci Rep 2014; 4: 7063.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dvinge H, Bradley RK . Widespread intron retention diversifies most cancer transcriptomes. Genome Med 2015; 7: 45.

    PubMed  PubMed Central  Google Scholar 

  79. Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN . SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 2012; 28: 2385–2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 2013; 10: 1185–1191.

    PubMed  PubMed Central  Google Scholar 

  81. Hooper JE . A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. Hum Genomics 2014; 8: 3.

    PubMed  PubMed Central  Google Scholar 

  82. Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E, Chen F et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol 2015; 33: 736–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu W, Seok J, Mindrinos MN, Schweitzer AC, Jiang H, Wilhelmy J et al. Human transcriptome array for high-throughput clinical studies. Proc Natl Acad Sci USA 2011; 108: 3707–3712.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen L, Tovar-Corona JM, Urrutia AO . Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts. Hum Mol Genet 2011; 20: 4422–4429.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Waks Z, Klein AM, Silver PA . Cell-to-cell variability of alternative RNA splicing. Mol Syst Biol 2011; 7: 506.

    PubMed  PubMed Central  Google Scholar 

  86. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009; 16: 670–676.

    CAS  PubMed  Google Scholar 

  87. Brinkman BM . Splice variants as cancer biomarkers. Clin Biochem 2004; 37: 584–594.

    CAS  PubMed  Google Scholar 

  88. Bauman JA, Kole R . Modulation of RNA splicing as a potential treatment for cancer. Bioeng Bugs 2011; 2: 125–128.

    PubMed  PubMed Central  Google Scholar 

  89. Miura K, Fujibuchi W, Unno M . Splice isoforms as therapeutic targets for colorectal cancer. Carcinogenesis 2012; 33: 2311–2319.

    CAS  PubMed  Google Scholar 

  90. Dehm SM . mRNA splicing variants: exploiting modularity to outwit cancer therapy. Cancer Res 2013; 73: 5309–5314.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan Y, Zuo X, Wei D . Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 2015, e-pub ahead of print 1 July 2015.

  92. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014; 14: 342–356.

    CAS  PubMed  Google Scholar 

  93. Birzele F, Voss E, Nopora A, Honold K, Heil F, Lohmann S et al. CD44 isoform status predicts response to treatment with anti-CD44 antibody in cancer patients. Clin Cancer Res 2015; 21: 2753–2762.

    CAS  PubMed  Google Scholar 

  94. Lu J, Van der Steen T, Tindall DJ . Are androgen receptor variants a substitute for the full-length receptor? Nat Rev Urol 2015; 12: 137–144.

    CAS  PubMed  Google Scholar 

  95. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371: 1028–1038.

    PubMed  PubMed Central  Google Scholar 

  96. Sveen A, Bakken AC, Ågesen TH, Lind GE, Nesbakken A, Nordgard O et al. The exon-level biomarker SLC39A14 has organ-confined cancer-specificity in colorectal cancer. Int J Cancer 2012; 131: 1479–1485.

    CAS  PubMed  Google Scholar 

  97. Thorsen K, Mansilla F, Schepeler T, Oster B, Rasmussen MH, Dyrskjot L et al. Alternative splicing of SLC39A14 in colorectal cancer is regulated by the Wnt pathway. Mol Cell Proteomics 2011; 10: M110.002998.

    PubMed  Google Scholar 

  98. Løvf M, Nome T, Bruun J, Eknaes M, Bakken AC, Mpindi JP et al. A novel transcript, VNN1-AB, as a biomarker for colorectal cancer. Int J Cancer 2014; 135: 2077–2084.

    PubMed  Google Scholar 

  99. Sveen A, Ã…gesen TH, Nesbakken A, Rognum TO, Lothe RA, Skotheim RI . Transcriptome instability in colorectal cancer identified by exon microarray analyses: associations with splicing factor expression levels and patient survival. Genome Med 2011; 3: 32.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sveen A, Johannessen B, Teixeira MR, Lothe RA, Skotheim RI . Transcriptome instability as a molecular pan-cancer characteristic of carcinomas. BMC Genomics 2014; 15: 672.

    PubMed  PubMed Central  Google Scholar 

  101. Bauman J, Jearawiriyapaisarn N, Kole R . Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2009; 19: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Vauchy C, Gamonet C, Ferrand C, Daguindau E, Galaine J, Beziaud L et al. CD20 alternative splicing isoform generates immunogenic CD4 helper T epitopes. Int J Cancer 2015; 137: 116–126.

    CAS  PubMed  Google Scholar 

  103. Wang Z, Burge CB . Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 2008; 14: 802–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Parada GE, Munita R, Cerda CA, Gysling K . A comprehensive survey of non-canonical splice sites in the human transcriptome. Nucleic Acids Res 2014; 42: 10564–10578.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wahl MC, Will CL, Luhrmann R . The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136: 701–718.

    CAS  PubMed  Google Scholar 

  106. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O et al. Deciphering the splicing code. Nature 2010; 465: 53–59.

    CAS  PubMed  Google Scholar 

  107. Wang GS, Cooper TA . Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007; 8: 749–761.

    CAS  PubMed  Google Scholar 

  108. Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 2007; 28: 150–158.

    CAS  PubMed  Google Scholar 

  109. Sterne-Weiler T, Sanford JR . Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol 2014; 15: 201.

    PubMed  PubMed Central  Google Scholar 

  110. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wellcome Trust Sange Institute. The Cancer Gene Census. Available at http://cancer.sanger.ac.uk/cancergenome/projects/census/.

  112. Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 2012; 22: 2315–2327.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Matera AG, Wang Z . A day in the life of the spliceosome. Nat Rev Mol Cell Biol 2014; 15: 108–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Will CL, Luhrmann R . Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011; 3: a003707.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tanackovic G, Kramer A . Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol Biol Cell 2005; 16: 1366–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y et al. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014; 21: 997–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep 2012; 1: 167–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Singh R, Valcarcel J . Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 2005; 12: 645–653.

    CAS  PubMed  Google Scholar 

  119. Fu XD, Ares MJ . Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 2014; 15: 689–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Grosso AR, Martins S, Carmo-Fonseca M . The emerging role of splicing factors in cancer. EMBO Rep 2008; 9: 1087–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Carbon S, Ireland A, Mungall CJ, Shu SQ, Marshall B, Lewis S et al. AmiGO:online access to ontology and annotation data. Bioinformatics 2009; 25: 288–289.

    CAS  PubMed  Google Scholar 

  123. Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 2008; 9: R139–R139.

    PubMed  PubMed Central  Google Scholar 

  124. The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013; 45: 1113–1120.

    Google Scholar 

  125. Research Unit on Biomedical Informatics, University Pompeu Fabra. Intogen TCGA. Available at http://www.intogen.org.

  126. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14: 185–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E et al. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev 2014; 28: 1068–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Orntoft TF et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013; 229: 630–639.

    CAS  PubMed  Google Scholar 

  129. Lokody I . Alternative splicing: Aberrant splicing promotes colon tumour growth. Nat Rev Cancer 2014; 14: 382–383.

    CAS  PubMed  Google Scholar 

  130. Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC et al. Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 2011; 30: 4084–4097.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Braeutigam C, Rago L, Rolke A, Waldmeier L, Christofori G, Winter J . The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 2013; 33: 1082–1092.

    PubMed  Google Scholar 

  132. Venables JP, Brosseau JP, Gadea G, Klinck R, Prinos P, Beaulieu JF et al. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol 2013; 33: 396–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 2014; 26: 374–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Silipo M, Gautrey H, Tyson-Capper A . Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015, e-pub ahead of print 5 May 2015.

  135. Valles I, Pajares MJ, Segura V, Guruceaga E, Gomez-Roman J, Blanco D et al. Identification of novel deregulated RNA metabolism-related genes in non-small cell lung cancer. PLoS One 2012; 7: e42086.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yi Y, Nandana S, Case T, Nelson C, Radmilovic T, Matusik RJ et al. Candidate metastasis suppressor genes uncovered by array comparative genomic hybridization in a mouse allograft model of prostate cancer. Mol Cytogenet 2009; 2: 18.

    PubMed  PubMed Central  Google Scholar 

  137. Rocak S, Linder P . DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 2004; 5: 232–241.

    CAS  PubMed  Google Scholar 

  138. Sugiura T, Nagano Y, Noguchi Y . DDX39, upregulated in lung squamous cell cancer, displays RNA helicase activities and promotes cancer cell growth. Cancer Biol Ther 2007; 6: 957–964.

    CAS  PubMed  Google Scholar 

  139. Kikuta K, Kubota D, Saito T, Orita H, Yoshida A, Tsuda H et al. Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics 2012; 75: 1089–1098.

    CAS  PubMed  Google Scholar 

  140. Kato M, Wei M, Yamano S, Kakehashi A, Tamada S, Nakatani T et al. DDX39 acts as a suppressor of invasion for bladder cancer. Cancer Sci 2012; 103: 1363–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ladd AN, Charlet N, Cooper TA . The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol 2001; 21: 1285–1296.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ramalingam S, Ramamoorthy P, Subramaniam D, Anant S . Reduced expression of RNA binding protein CELF2, a putative tumor suppressor gene in colon cancer. Immunogastroenterology 2012; 1: 27–33.

    PubMed  PubMed Central  Google Scholar 

  143. Shitashige M, Naishiro Y, Idogawa M, Honda K, Ono M, Hirohashi S et al. Involvement of splicing factor-1 in beta-catenin/T-cell factor-4-mediated gene transactivation and pre-mRNA splicing. Gastroenterology 2007; 132: 1039–1054.

    CAS  PubMed  Google Scholar 

  144. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002; 13: 1977–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gaffney DJ . Global properties and functional complexity of human gene regulatory variation. PLoS Genet 2013; 9: e1003501.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Albert FW, Kruglyak L . The role of regulatory variation in complex traits and disease. Nat Rev Genet 2015; 16: 197–212.

    CAS  PubMed  Google Scholar 

  147. Ecker S, Pancaldi V, Rico D, Valencia A . Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia. Genome Med 2015; 7: 8.

    PubMed  PubMed Central  Google Scholar 

  148. Brock A, Chang H, Huang S . Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 2009; 10: 336–342.

    CAS  PubMed  Google Scholar 

  149. Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D et al. Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol 2013; 10: 277–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ma Y, Dostie J, Dreyfuss G, Van Duyne GD . The Gemin6-Gemin7 heterodimer from the survival of motor neurons complex has an Sm protein-like structure. Structure 2005; 13: 883–892.

    CAS  PubMed  Google Scholar 

  151. Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG . Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 2007; 178: 733–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Horowitz DS, Lee EJ, Mabon SA, Misteli T . A cyclophilin functions in pre-mRNA splicing. EMBO J 2002; 21: 470–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu X, Kensche PR, Huynen MA, Notebaart RA . Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. Nat Commun 2013; 4: 2124.

    PubMed  Google Scholar 

  154. Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J et al. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res 2014; 74: 5656–5667.

    CAS  PubMed  Google Scholar 

  155. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5: 176ra133.

    Google Scholar 

  156. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997; 15: 2233–2239.

    CAS  PubMed  Google Scholar 

  157. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Watson IR, Takahashi K, Futreal PA, Chin L . Emerging patterns of somatic mutations in cancer. Nat Rev Genet 2013; 14: 703–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    CAS  PubMed  Google Scholar 

  160. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52.

    PubMed  Google Scholar 

  161. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    PubMed Central  Google Scholar 

  163. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 2013; 3: 1122–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Harbour JW, Roberson ED, Anbunathan H, Onken MD, Worley LA, Bowcock AM . Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet 2013; 45: 133–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Hahn CN, Venugopal P, Scott HS, Hiwase DK . Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev 2015; 263: 257–278.

    CAS  PubMed  Google Scholar 

  167. Scott LM, Rebel VI . Acquired mutations that affect pre-mRNA splicing in hematologic malignancies and solid tumors. J Natl Cancer Inst 2013; 105: 1540–1549.

    CAS  PubMed  Google Scholar 

  168. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Qian J, Yao DM, Lin J, Qian W, Wang CZ, Chai HY et al. U2AF1 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One 2012; 7: e45760.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 2015; 27: 631–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.

    PubMed Central  Google Scholar 

  172. Ding L, Wendl MC, Koboldt DC, Mardis ER . Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet 2010; 19: R188–R196.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Garraway LA, Lander ES . Lessons from the cancer genome. Cell 2013; 153: 17–37.

    CAS  PubMed  Google Scholar 

  176. Wheeler DA, Wang L . From human genome to cancer genome: the first decade. Genome Res 2013; 23: 1054–1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    PubMed Central  Google Scholar 

  178. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012; 22: 1589–1598.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N . OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 2013; 29: 2238–2244.

    CAS  PubMed  Google Scholar 

  181. Jia P, Wang Q, Chen Q, Hutchinson KE, Pao W, Zhao Z . MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol 2014; 15: 489.

    PubMed  PubMed Central  Google Scholar 

  182. Gonzalez-Perez A, Lopez-Bigas N . Functional impact bias reveals cancer drivers. Nucleic Acids Res 2012; 40: e169.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Reimand J, Bader GD . Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 2013; 9: 637.

    PubMed  PubMed Central  Google Scholar 

  184. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 2009; 69: 6660–6667.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C, Reimand J et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep 2013; 3: 2650.

    PubMed  PubMed Central  Google Scholar 

  186. Tomsic J, He H, Akagi K, Liyanarachchi S, Pan Q, Bertani B et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep 2015; 5: 10566.

    PubMed  PubMed Central  Google Scholar 

  187. Rubio-Perez C, Tamborero D, Schroeder MP, Antolin AA, Deu-Pons J, Perez-Llamas C et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 2015; 27: 382–396.

    CAS  PubMed  Google Scholar 

  188. Løvf M, Thomassen GO, Bakken AC, Celestino R, Fioretos T, Lind GE et al. Fusion gene microarray reveals cancer type-specificity among fusion genes. Genes Chromosomes Cancer 2011; 50: 348–357.

    PubMed  Google Scholar 

  189. Goransson M, Andersson MK, Forni C, Stahlberg A, Andersson C, Olofsson A et al. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene 2009; 28: 270–278.

    CAS  PubMed  Google Scholar 

  190. Kalyana-Sundaram S, Shankar S, Deroo S, Iyer MK, Palanisamy N, Chinnaiyan AM et al. Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. Neoplasia 2012; 14: 702–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Choi JW, Kim DG, Lee AE, Kim HR, Lee JY, Kwon NH et al. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 2011; 7: e1001351.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ullrich N, Heinemann A, Nilewski E, Scheffrahn I, Klode J, Scherag A et al. CEACAM1-3S drives melanoma cells into NK cell-mediated cytolysis and enhances patient survival. Cancer Res 2015; 75: 1897–1907.

    CAS  PubMed  Google Scholar 

  193. Zhao Q, Caballero OL, Davis ID, Jonasch E, Tamboli P, Yung WK et al. Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin Cancer Res 2013; 19: 2460–2472.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Schwerk C, Schulze-Osthoff K . Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell 2005; 19: 1–13.

    CAS  PubMed  Google Scholar 

  195. Fushimi K, Ray P, Kar A, Wang L, Sutherland LC, Wu JY . Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5. Proc Natl Acad Sci USA 2008; 105: 15708–15713.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Olsson M, Zhivotovsky B . Caspases and cancer. Cell Death Differ 2011; 18: 1441–1449.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Himeji D, Horiuchi T, Tsukamoto H, Hayashi K, Watanabe T, Harada M . Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood 2002; 99: 4070–4078.

    CAS  PubMed  Google Scholar 

  198. van Doorn R, Dijkman R, Vermeer MH, Starink TM, Willemze R, Tensen CP . A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer Res 2002; 62: 5389–5392.

    CAS  PubMed  Google Scholar 

  199. Park SJ, Kim YY, Ju JW, Han BG, Park SI, Park BJ . Alternative splicing variants of c-FLIP transduce the differential signal through the Raf or TRAF2 in TNF-induced cell proliferation. Biochem Biophys Res Commun 2001; 289: 1205–1210.

    CAS  PubMed  Google Scholar 

  200. Safa AR, Pollok KE . Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers 2011; 3: 1639–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Shieh JJ, Liu KT, Huang SW, Chen YJ, Hsieh TY . Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells. J Invest Dermatol 2009; 129: 2497–2506.

    CAS  PubMed  Google Scholar 

  202. Bartel F, Taubert H, Harris LC . Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2002; 2: 9–15.

    CAS  PubMed  Google Scholar 

  203. Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ . Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996; 13: 85–96.

    CAS  PubMed  Google Scholar 

  204. Wang H, Zhou M, Shi B, Zhang Q, Jiang H, Sun Y et al. Identification of an exon 4-deletion variant of epidermal growth factor receptor with increased metastasis-promoting capacity. Neoplasia 2011; 13: 461–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA . Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 1997; 15: 3059–3065.

    CAS  PubMed  Google Scholar 

  206. Feng S, Wang F, Matsubara A, Kan M, McKeehan WL . Fibroblast growth factor receptor 2 limits and receptor 1 accelerates tumorigenicity of prostate epithelial cells. Cancer Res 1997; 57: 5369–5378.

    CAS  PubMed  Google Scholar 

  207. Cohen JB, Broz SD, Levinson AD . Expression of the H-ras proto-oncogene is controlled by alternative splicing. Cell 1989; 58: 461–472.

    CAS  PubMed  Google Scholar 

  208. Voice JK, Klemke RL, Le A, Jackson JH . Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem 1999; 274: 17164–17170.

    CAS  PubMed  Google Scholar 

  209. Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ et al. K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res 2006; 25: 259–267.

    CAS  PubMed  Google Scholar 

  210. Agrawal S, Eng C . Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet 2006; 15: 777–787.

    CAS  PubMed  Google Scholar 

  211. Marcel V, Fernandes K, Terrier O, Lane DP, Bourdon JC . Modulation of p53beta and p53gamma expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ 2014; 21: 1377–1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES . Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25: 1620–1628.

    CAS  PubMed  Google Scholar 

  213. Schubert EL, Strong LC, Hansen MF . A splicing mutation in RB1 in low penetrance retinoblastoma. Hum Genet 1997; 100: 557–563.

    CAS  PubMed  Google Scholar 

  214. Ge K, DuHadaway J, Du W, Herlyn M, Rodeck U, Prendergast GC . Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc Natl Acad Sci USA 1999; 96: 9689–9694.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Ferrarese R, Harsh GR, Yadav AK, Bug E, Maticzka D, Reichardt W et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J Clin Invest 2014; 124: 2861–2876.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Vudattu NK, Magalhaes I, Hoehn H, Pan D, Maeurer MJ . Expression analysis and functional activity of interleukin-7 splice variants. Genes Immun 2009; 10: 132–140.

    CAS  PubMed  Google Scholar 

  217. Pan D, Liu B, Jin X, Zhu J . IL-7 splicing variant IL-7delta5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway. Biochem Biophys Res Commun 2012; 422: 727–731.

    CAS  PubMed  Google Scholar 

  218. Rouas-Freiss N, Bruel S, Menier C, Marcou C, Moreau P, Carosella ED . Switch of HLA-G alternative splicing in a melanoma cell line causes loss of HLA-G1 expression and sensitivity to NK lysis. Int J Cancer 2005; 117: 114–122.

    CAS  PubMed  Google Scholar 

  219. Wong MS, Wright WE, Shay JW . Alternative splicing regulation of telomerase: a new paradigm? Trends Genet 2014; 30: 430–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH . The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 2013; 73: 2817–2828.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Ponta H, Sherman L, Herrlich PA . CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33–45.

    CAS  PubMed  Google Scholar 

  222. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13–24.

    CAS  PubMed  Google Scholar 

  223. Gray-Owen SD, Blumberg RS . CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 2006; 6: 433–446.

    CAS  PubMed  Google Scholar 

  224. Savagner P, Valles AM, Jouanneau J, Yamada KM, Thiery JP . Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial-mesenchymal transition in rat bladder carcinoma cells. Mol Biol Cell 1994; 5: 851–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Samatov TR, Tonevitsky AG, Schumacher U . Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer 2013; 12: 107.

    PubMed  PubMed Central  Google Scholar 

  226. Lee JH, Seo YW, Park SR, Kim YJ, Kim KK . Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res 2003; 63: 7247–7255.

    CAS  PubMed  Google Scholar 

  227. Hatami R, Sieuwerts AM, Izadmehr S, Yao Z, Qiao RF, Papa L et al. KLF6-SV1 drives breast cancer metastasis and is associated with poor survival. Sci Transl Med 2013; 5: 169ra112.

    Google Scholar 

  228. Li Z, Mou H, Wang T, Xue J, Deng B, Qian L et al. A non-secretory form of FAM3B promotes invasion and metastasis of human colon cancer cells by upregulating Slug expression. Cancer Lett 2013; 328: 278–284.

    CAS  PubMed  Google Scholar 

  229. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005; 20: 881–890.

    CAS  PubMed  Google Scholar 

  231. Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshida K, Sakakibara M, Okada R et al. Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol 2003; 162: 1857–1867.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Goswami S, Philippar U, Sun D, Patsialou A, Avraham J, Wang W et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis 2009; 26: 153–159.

    CAS  PubMed  Google Scholar 

  233. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    CAS  PubMed  Google Scholar 

  234. Babic I, Anderson ES, Tanaka K, Guo D, Masui K, Li B et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab 2013; 17: 1000–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. van den Heuvel AP, Jing J, Wooster RF, Bachman KE . Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther 2012; 13: 1185–1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Koslowski M, Tureci O, Bell C, Krause P, Lehr HA, Brunner J et al. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res 2002; 62: 6750–6755.

    CAS  PubMed  Google Scholar 

  238. Thomas M, Bayha C, Klein K, Muller S, Weiss TS, Schwab M et al. The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARalpha-tr, autonomously regulates proliferative and pro-inflammatory genes. BMC Cancer 2015; 15: 488.

    PubMed  PubMed Central  Google Scholar 

  239. Guo R, Li Y, Ning J, Sun D, Lin L, Liu X . HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells. PLoS One 2013; 8: e62729.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Zammarchi F, de Stanchina E, Bournazou E, Supakorndej T, Martires K, Riedel E et al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci USA 2011; 108: 17779–17784.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Nagano O, Okazaki S, Saya H . Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 2013; 32: 5191–5198.

    CAS  PubMed  Google Scholar 

  242. Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel A et al. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep 2002; 3: 248–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Renkonen E, Lohi H, Jarvinen HJ, Mecklin JP, Peltomaki P . Novel splicing associations of hereditary colon cancer related DNA mismatch repair gene mutations. J Med Genet 2004; 41: e95.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Feltes CM, Kudo A, Blaschuk O, Byers SW . An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res 2002; 62: 6688–6697.

    CAS  PubMed  Google Scholar 

  245. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Astrof S, Hynes RO . Fibronectins in vascular morphogenesis. Angiogenesis 2009; 12: 165–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015, e-pub ahead of print 4 June 2015 doi:10.1001/jamaoncol.2015.1341.

    PubMed  PubMed Central  Google Scholar 

  248. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18: 521–528.

    CAS  PubMed  Google Scholar 

  249. Vivas-Mejia PE, Rodriguez-Aguayo C, Han HD, Shahzad MM, Valiyeva F, Shibayama M et al. Silencing survivin splice variant 2B leads to antitumor activity in taxane—resistant ovarian cancer. Clin Cancer Res 2011; 17: 3716–3726.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Vegran F, Boidot R, Oudin C, Riedinger JM, Bonnetain F, Lizard-Nacol S . Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin Cancer Res 2006; 12: 5794–5800.

    CAS  PubMed  Google Scholar 

  251. Uckun FM, Qazi S, Ma H, Reaman GH, Mitchell LG . CD22DeltaE12 as a molecular target for corrective repair using RNA trans-splicing: anti-leukemic activity of a rationally designed RNA trans-splicing molecule. Integr Biol 2015; 7: 237–249.

    CAS  Google Scholar 

  252. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST . Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 2005; 11: 483–489.

    CAS  PubMed  Google Scholar 

  253. Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res 2008; 14: 7624–7634.

    CAS  PubMed  Google Scholar 

  254. Lee TK, Murthy SR, Cawley NX, Dhanvantari S, Hewitt SM, Lou H et al. An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest 2011; 121: 880–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhao S, Chang SL, Linderman JJ, Feng FY, Luker GD . A comprehensive analysis of CXCL12 isoforms in breast cancer. Transl Oncol 2014; 7: 429–438.

    PubMed Central  Google Scholar 

  256. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 2009; 69: 4252–4259.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Ji H, Zhao X, Yuza Y, Shimamura T, Li D, Protopopov A et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci USA 2006; 103: 7817–7822.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Bria E, Di Modugno F, Sperduti I, Iapicca P, Visca P, Alessandrini G et al. Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer. Oncotarget 2014; 5: 11054–11063.

    PubMed  PubMed Central  Google Scholar 

  259. Konno R, Takano T, Sato S, Yajima A . Serum soluble fas level as a prognostic factor in patients with gynecological malignancies. Clin Cancer Res 2000; 6: 3576–3580.

    CAS  PubMed  Google Scholar 

  260. Bai A, Meetze K, Vo NY, Kollipara S, Mazsa EK, Winston WM et al. GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res 2010; 70: 7630–7639.

    CAS  PubMed  Google Scholar 

  261. Matsuda Y, Hagio M, Seya T, Ishiwata T . Fibroblast growth factor receptor 2 IIIc as a therapeutic target for colorectal cancer cells. Mol Cancer Ther 2012; 11: 2010–2020.

    CAS  PubMed  Google Scholar 

  262. Lin KT, Shann YJ, Chau GY, Hsu CN, Huang CY . Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene 2014; 33: 4786–4794.

    CAS  PubMed  Google Scholar 

  263. Femel J, Huijbers EJ, Saupe F, Cedervall J, Zhang L, Roswall P et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 2014; 5: 12418–12427.

    PubMed  PubMed Central  Google Scholar 

  264. Stark M, Wichman C, Avivi I, Assaraf YG . Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 2009; 113: 4362–4369.

    CAS  PubMed  Google Scholar 

  265. Dales JP, Beaufils N, Silvy M, Picard C, Pauly V, Pradel V et al. Hypoxia inducible factor 1alpha gene (HIF-1alpha) splice variants: potential prognostic biomarkers in breast cancer. BMC Med 2010; 8: 44.

    PubMed  PubMed Central  Google Scholar 

  266. Iacobucci I, Lonetti A, Messa F, Cilloni D, Arruga F, Ottaviani E et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 2008; 112: 3847–3855.

    CAS  PubMed  Google Scholar 

  267. Hartel M, Narla G, Wente MN, Giese NA, Martignoni ME, Martignetti JA et al. Increased alternative splicing of the KLF6 tumour suppressor gene correlates with prognosis and tumour grade in patients with pancreatic cancer. Eur J Cancer 2008; 44: 1895–1903.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Planque C, Choi YH, Guyetant S, Heuzé-Vourc'h N, Briollais L, Courty Y . Alternative splicing variant of kallikrein-related peptidase 8 as an independent predictor of unfavorable prognosis in lung cancer. Clin Chem 2010; 56: 987–997.

    CAS  PubMed  Google Scholar 

  269. Palve V, Mallick S, Ghaisas G, Kannan S, Teni T . Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers. PLoS One 2014; 9: e111927.

    PubMed  PubMed Central  Google Scholar 

  270. Lukas J, Gao DQ, Keshmeshian M, Wen WH, Tsao-Wei D, Rosenberg S et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res 2001; 61: 3212–3219.

    CAS  PubMed  Google Scholar 

  271. Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AF, Repapi E et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 2012; 72: 4074–4084.

    CAS  PubMed  Google Scholar 

  272. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015; 5: 850–859.

    CAS  PubMed  Google Scholar 

  273. Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 2013; 32: 2848–2857.

    CAS  PubMed  Google Scholar 

  274. Hong J, Yuan Y, Wang J, Liao Y, Zou R, Zhu C et al. Expression of variant isoforms of the tyrosine kinase SYK determines the prognosis of hepatocellular carcinoma. Cancer Res 2014; 74: 1845–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Wong MS, Chen L, Foster C, Kainthla R, Shay JW, Wright WE . Regulation of telomerase alternative splicing: a target for chemotherapy. Cell Rep 2013; 3: 1028–1035.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Bates DO, Catalano PJ, Symonds KE, Varey AH, Ramani P, O'Dwyer PJ et al. Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clin Cancer Res 2012; 18: 6384–6391.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Jiang SW, Chen H, Dowdy S, Fu A, Attewell J, Kalogera E et al. HE4 transcription- and splice variants-specific expression in endometrial cancer and correlation with patient survival. Int J Mol Sci 2013; 14: 22655–22677.

    PubMed  PubMed Central  Google Scholar 

  278. Chen HH, Wang YC, Fann MJ . Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006; 26: 2736–2745.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP et al. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 2012; 19: 1139–1146.

    CAS  PubMed  Google Scholar 

  280. Yadav SP, Hao H, Yang HJ, Kautzmann MA, Brooks M, Nellissery J et al. The transcription-splicing protein NonO/p54nrb and three NonO-interacting proteins bind to distal enhancer region and augment rhodopsin expression. Hum Mol Genet 2014; 23: 2132–2144.

    CAS  PubMed  Google Scholar 

  281. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez de Castro D, Gomez B, Forster J et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4trial. Blood 2013; 121: 468–475.

    CAS  PubMed  Google Scholar 

  283. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011; 44: 53–57.

    PubMed  PubMed Central  Google Scholar 

  284. Przychodzen B, Jerez A, Guinta K, Sekeres MA, Padgett R, Maciejewski JP et al. Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. Blood 2013; 122: 999–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND . WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 1998; 12: 3217–3225.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Wang Y, Gogol-Doring A, Hu H, Frohler S, Ma Y, Jens M et al. Integrative analysis revealed the molecular mechanism underlying RBM10-mediated splicing regulation. EMBO Mol Med 2013; 5: 1431–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Johnston JJ, Teer JK, Cherukuri PF, Hansen NF, Loftus SK, Chong K et al. Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am J Hum Genet 2010; 86: 743–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Revenkova E, Focarelli ML, Susani L, Paulis M, Bassi MT, Mannini L et al. Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA. Hum Mol Genet 2009; 18: 418–427.

    CAS  PubMed  Google Scholar 

  289. Blencowe BJ, Bauren G, Eldridge AG, Issner R, Nickerson JA, Rosonina E et al. The SRm160/300 splicing coactivator subunits. RNA 2000; 6: 111–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Shehadeh LA, Yu K, Wang L, Guevara A, Singer C, Vance J et al. SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson's disease. PLoS One 2010; 5: e9104.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Southern and Eastern Norway Regional Health Authority (Research Grant ‘Genome Medicine of Colorectal Cancer’, project number 2011024), the Norwegian Cancer Society (PR-2007-0166 and PR-2006-0442), the KG Jebsen foundation and the Research Council of Norway through its Centres of Excellence funding scheme (project number 179571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R I Skotheim.

Ethics declarations

Competing interests

SK is a CEO and Co-Founder of MediSapiens Ltd. AR is employed by MediSapiens Ltd. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveen, A., Kilpinen, S., Ruusulehto, A. et al. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413–2427 (2016). https://doi.org/10.1038/onc.2015.318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.318

This article is cited by

Search

Quick links