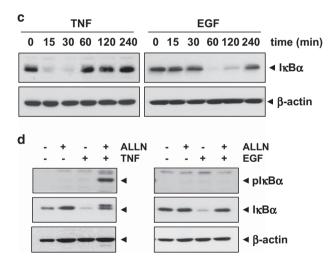


CORRIGENDUM

Epidermal growth factor (EGF) activates nuclear factor- κ B through $I_{\kappa}B_{\alpha}$ kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of $I_{\kappa}B_{\alpha}$

G Sethi, KS Ahn, MM Chaturvedi and BB Aggarwal


Oncogene (2015) 34, 5407; doi:10.1038/onc.2015.313

Correction to: *Oncogene* (2007) **26**, 7324–7332; doi:10.1038/sj. onc.1210544; published online 28 May 2007

Since the publication of the above article the authors have identified that β -actin, the loading control, in Figures 1c and d

were published incorrectly. The experiment was repeated and the correct versions of these figures and figure legends are shown below.

The authors wish to apologise for any inconvenience caused.

Figure 1. (c) Both TNF and EGF induce $I_{\kappa}B_{\alpha}$ degradation. Cells were treated with 0.1 nm TNF or 100 ng/ml EGF for the indicated times and then cytoplasmic extracts were prepared and western blot analysis was performed with anti- $I_{\kappa}B_{\alpha}$ antibody. **(d)** TNF induces $I_{\kappa}B_{\alpha}$ phosphorylation at the Ser32/36 position, but EGF does not. Cells were preincubated with 100 µg/ml proteasome inhibitor ALLN for 1h and then treated with either 0.1 nm TNF for 15 min or 100 ng/ml EGF for 60 min. Cytoplasmic extracts were prepared and then western blot analysis was performed with phospho-specific anti- $I_{\kappa}B_{\alpha}$ antibody.