Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition

Abstract

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), an important tumour-suppressor gene, is mutated, downregulated or dysfunctional in many tumours. The phosphatase activity of PTEN depends on membrane translocation (activation). As promising anti-cancer agents, histone deacetylase (HDAC) inhibitors, particularly trichostatin A (TSA), can promote PTEN membrane translocation, but the underlying mechanism remains unknown. In this study, we revealed that non-selective HDAC inhibitors, namely, TSA or suberoylanilide hydroxamic acid (SAHA), induced PTEN membrane translocation through PTEN acetylation at K163 by inhibiting HDAC6. K163 acetylation inhibited the interaction of the PTEN C-tail with the remaining part of PTEN, resulting in PTEN membrane translocation. Overexpression of wild-type PTEN, but not K163-mutated PTEN, facilitated the inhibition of cell proliferation, migration and invasion, as well as xenograft tumour growth, induced by SAHA or tubastatin A, an HDAC6-specific inhibitor. These results indicated that PTEN activation by inhibiting HDAC6 significantly contributed to tumour inhibition. Therefore, non-selective HDAC or HDAC6-specific inhibitors may be more clinically suitable to treat tumours without PTEN mutations or deletions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  3. Li DM, Sun H . TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997; 57: 2124–2129.

    CAS  PubMed  Google Scholar 

  4. Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997; 57: 3935–3940.

    CAS  PubMed  Google Scholar 

  5. Tsao H, Zhang X, Benoit E, Haluska FG . Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 1998; 16: 3397–3402.

    Article  CAS  PubMed  Google Scholar 

  6. Squarize CH, Castilho RM, Abrahao AC, Molinolo A, Lingen MW, Gutkind JS . PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia 2013; 15: 461–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  8. Li DM, Sun H . PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 1998; 95: 15406–15411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999; 96: 6199–6204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leslie NR, Yang X, Downes CP, Weijer CJ . The regulation of cell migration by PTEN. Biochem Soc Trans 2005; 33: 1507–1508.

    Article  CAS  PubMed  Google Scholar 

  11. Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK et al. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 2001; 98: 4622–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vazquez F, Matsuoka S, Sellers WR, Yanagida T, Ueda M, Devreotes PN . Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci USA 2006; 103: 3633–3638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iijima M, Huang YE, Luo HR, Vazquez F, Devreotes PN . Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J Biol Chem 2004; 279: 16606–16613.

    Article  CAS  PubMed  Google Scholar 

  14. Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK . A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene 2007; 26: 3930–3940.

    Article  CAS  PubMed  Google Scholar 

  15. Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP . The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 2004; 379: 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 1999; 99: 323–334.

    Article  CAS  PubMed  Google Scholar 

  17. Das S, Dixon JE, Cho W . Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA 2003; 100: 7491–7496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lumb CN, Sansom MS . Defining the membrane-associated state of the PTEN tumor suppressor protein. Biophys J 2013; 104: 613–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G . Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. Arch Biochem Biophys 2004; 429: 123–133.

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 2012; 3: 911.

    Article  PubMed  Google Scholar 

  21. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN . A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 2009; 106: 480–485.

    Article  CAS  PubMed  Google Scholar 

  22. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  23. Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB . PCAF modulates PTEN activity. J Biol Chem 2006; 281: 26562–26568.

    Article  CAS  PubMed  Google Scholar 

  24. Dekker FJ . Histone acetyl transferases as emerging drug targets. Drug Discovery Today 2009; 14: 942–948.

    Article  CAS  PubMed  Google Scholar 

  25. Witt O, Deubzer HE, Milde T, Oehme I . HDAC family: What are the cancer relevant targets? Cancer Lett 2009; 277: 8–21.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008; 28: 1688–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y, Barrientos T et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res 2008; 68: 7561–7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL . Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003; 100: 4389–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 2002; 21: 6820–6831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005; 18: 601–607.

    Article  CAS  PubMed  Google Scholar 

  31. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 2005; 24: 4531–4539.

    Article  CAS  PubMed  Google Scholar 

  32. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417: 455–458.

    Article  CAS  PubMed  Google Scholar 

  33. Altonsy MO, Habib TN, Andrews SC . Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr Cancer 2012; 64: 1251–1260.

    Article  CAS  PubMed  Google Scholar 

  34. Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000; 60: 5165–5170.

    CAS  PubMed  Google Scholar 

  35. Kim HR, Kim EJ, Yang SH, Jeong ET, Park C, Lee JH et al. Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med 2006; 38: 616–624.

    Article  CAS  PubMed  Google Scholar 

  36. Herold C, Ganslmayer M, Ocker M, Hermann M, Geerts A, Hahn EG et al. The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 2002; 36: 233–240.

    Article  CAS  PubMed  Google Scholar 

  37. Donadelli M, Costanzo C, Faggioli L, Scupoli MT, Moore PS, Bassi C et al. Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol Carcinog 2003; 38: 59–69.

    Article  CAS  PubMed  Google Scholar 

  38. Duan H, Heckman CA, Boxer LM . Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 2005; 25: 1608–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duvic M, Vu J . Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 2007; 16: 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  40. Mei S, Ho AD, Mahlknecht U . Role of histone deacetylase inhibitors in the treatment of cancer (Review). Int J Oncol 2004; 25: 1509–1519.

    CAS  PubMed  Google Scholar 

  41. Gan YH, Zhang S . PTEN/AKT pathway involved in histone deacetylases inhibitor induced cell growth inhibition and apoptosis of oral squamous cell carcinoma cells. Oral Oncol 2009; 45: e150–e154.

    Article  CAS  PubMed  Google Scholar 

  42. Kou XX, Hao T, Meng Z, Zhou YH, Gan YH . Acetylated Sp1 inhibits PTEN expression through binding to PTEN core promoter and recruitment of HDAC1 and promotes cancer cell migration and invasion. Carcinogenesis 2013; 34: 58–67.

    Article  CAS  PubMed  Google Scholar 

  43. Georgescu MM, Kirsch KH, Kaloudis P, Yang H, Pavletich NP, Hanafusa H . Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res 2000; 60: 7033–7038.

    CAS  PubMed  Google Scholar 

  44. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dallavalle S, Pisano C, Zunino F . Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 2012; 84: 756–765.

    Article  CAS  PubMed  Google Scholar 

  46. Chen CS, Weng SC, Tseng PH, Lin HP . Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 2005; 280: 38879–38887.

    Article  CAS  PubMed  Google Scholar 

  47. Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W et al. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 1999; 274: 11713–11720.

    Article  CAS  PubMed  Google Scholar 

  48. Oehme I, Linke JP, Bock BC, Milde T, Lodrini M, Hartenstein B et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci USA 2013; 110: E2592–E2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81472764 and 81271173) and China International Science and Technology Cooperation (Grant No. 2013DFB30360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-H Gan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Jia, LF. & Gan, YH. PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene 35, 2333–2344 (2016). https://doi.org/10.1038/onc.2015.293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.293

This article is cited by

Search

Quick links