Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation

Abstract

The unique characteristic of head and neck squamous cell carcinoma (HNSCC) is that local invasion rather than distant metastasis is the major route for dissemination. Therefore, targeting the locally invasive cancer cells is more important than preventing systemic metastasis in HNSCC and other invasive-predominant cancers. We previously demonstrate a specific mechanism for HNSCC local invasion: the epithelial–mesenchymal transition (EMT) regulator Twist1 represses microRNA let-7i expression, leading to the activation of the small GTPase Rac1 and engendering the mesenchymal-mode movement in three-dimensional (3D) culture. However, targeting the EMT regulator is relatively difficult because of its transcription factor nature and the strategy for confining HNSCC invasion to facilitate local treatment is limited. Imipramine blue (IB) is a newly identified anti-invasive compound that effectively inhibits glioma invasion. Here we demonstrate that in HNSCC cells, a noncytotoxic dose of IB represses mesenchymal-mode migration in two-and-a-half-dimensional/3D culture system. IB suppresses EMT and stemness of HNSCC cells through inhibition of Twist1-mediated let-7i downregulation and Rac1 activation and the EMT signalling. Mechanistically, IB inhibits reactive oxygen species-induced nuclear factor-κB pathway activation. Importantly, IB promotes degradation of the EMT inducer Twist1 by enhancing F-box and leucine-rich repeat protein 14 (FBXL14)-mediated polyubiquitination of Twist1. Together, this study demonstrates the potent anti-invasion and EMT-inhibition effect of IB, suggesting the potential of IB in treating local invasion-predominant cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Garavello W, Ciardo A, Spreafico R, Gaini RM . Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2006; 132: 762–766.

    Article  PubMed  Google Scholar 

  3. Pentenero M, Gandolfo S, Carrozzo M . Importance of tumor thickness and depth of invasion in nodal involvement and prognosis of oral squamous cell carcinoma: a review of the literature. Head Neck 2005; 27: 1080–1091.

    Article  PubMed  Google Scholar 

  4. Forastiere AA, Zhang Q, Weber RS, Maor MH, Goepfert H, Pajak TF et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol 2013; 31: 845–852.

    Article  CAS  PubMed  Google Scholar 

  5. Lorch JH, Goloubeva O, Haddad RI, Cullen K, Sarlis N, Tishler R et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol 2011; 12: 153–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedl P . Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004; 16: 14–23.

    Article  CAS  PubMed  Google Scholar 

  7. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510–523.

    Article  CAS  PubMed  Google Scholar 

  8. Sanz-Moreno V, Marshall CJ . The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol 2010; 22: 690–696.

    Article  CAS  PubMed  Google Scholar 

  9. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E . ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006; 16: 1515–1523.

    Article  CAS  PubMed  Google Scholar 

  10. Panková K, Rösel D, Novotný M, Brábek J . The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 2010; 67: 63–71.

    Article  PubMed  Google Scholar 

  11. Madsen CD, Sahai E . Cancer dissemination-lessons from leukocytes. Dev Cell 2010; 19: 13–26.

    Article  CAS  PubMed  Google Scholar 

  12. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  13. Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

    Article  PubMed  Google Scholar 

  14. Tsai JH, Yang J . Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27: 2192–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY et al. RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 2012; 14: 366–374.

    Article  CAS  PubMed  Google Scholar 

  16. Yang WH, Lan HY, Tai SK, Yang MH . Repression of bone morphogenetic protein 4 by let-7i attenuates mesenchymal migration of head and neck cancer cells. Biochem Biophys Res Commun 2013; 433: 24–30.

    Article  CAS  PubMed  Google Scholar 

  17. Di C, Mattox AK, Harward S, Adamson C . Emerging therapeutic targets and agents for glioblastoma migrating cells. Anticancer Agents Med Chem 2010; 10: 543–555.

    Article  CAS  PubMed  Google Scholar 

  18. Munson JM, Fried L, Rowson SA, Bonner MY, Karumbaiah L, Diaz B et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci Transl Med 2012; 4: 127ra36.

    Article  PubMed  Google Scholar 

  19. Carlsson SK, Brothers SP, Wahlestedt C . Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014; 6: 1359–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newton HB, Rosenblum MK, Walker RW . Extraneural metastases of infratentorial glioblastoma multiforme to the peritoneal cavity. Cancer 1992; 69: 2149–2153.

    Article  CAS  PubMed  Google Scholar 

  21. Evan-Ram S, Yamada KM . Cell migration in 3D matrix. Curr Opin Cell Biol 2005; 17: 524–532.

    Article  Google Scholar 

  22. Slorach EM, Chou J, Werb Z . Zeppo1 is a metastasis promoter that represses E-cadherin expression and regulates p120-catenin isoform expression and localization. Genes Dev 2011; 25: 471–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial- mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  PubMed  Google Scholar 

  24. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104: 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgan MJ, Liu ZG . Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21: 103–115.

    Article  CAS  PubMed  Google Scholar 

  27. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL et al. Epithelial-mesenchymal transition induced by TNF-α requires NF-κB-mediated transcriptional upregulation of Twist1. Cancer Res 2012; 72: 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 1994; 153: 712–723.

    CAS  PubMed  Google Scholar 

  29. Libermann TA, Baltimore D . Activation of interleukin-6 gene expression through the NF-KB transcription factor. Mol Cell Biol 1990; 10: 2327–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ravid T, Hochstrasser M . Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Biol 2008; 9: 679–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lander R, Nordin K, LaBonne C . The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. J Cell Biol 2011; 194: 17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhong J, Ogura K, Wang Z, Inuzuka H . Degradation of the transcription factor Twist, an oncoprotein that promotes cancer metastasis. Discov Med 2013; 15: 7–15.

    PubMed Central  PubMed  Google Scholar 

  33. Ho MS, Tsai PI, Chien CT . F-box proteins: the key to protein degradation. J Biomed Sci 2006; 13: 181–191.

    Article  CAS  PubMed  Google Scholar 

  34. Viñas-Castells R, Beltran M, Valls G, Gómez I, García JM, Montserrat-Sentís B et al. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem 2010; 285: 3794–3805.

    Article  PubMed  Google Scholar 

  35. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH et al. Acetylation of Snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell 2014; 26: 534–548.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Víctor M Díaz (Universitat Pompeu Fabra, Barcelona, Spain) for the generous gifts of pcDNA3-myc-FBXL14 and pcDNA3-FBXL14ΔF plasmids. We thank Professor Kuo-Wei Chang (National Yang-Ming University, Taiwan) for providing OECM-1 cell line. This work was supported by Ministry of Science and Technology (103-2321-B-010-019, 103-2314-B-010-034, 103-2633-H-010-001, and 103-2314-B-010-035 to M-HY), Taipei Veterans General Hospital (V104-E8-001 to M-HY), a grant from Ministry of Education, Aim for the Top University Plan (to M-HY) and a grant from the Ministry of Health and Welfare, Center of Excellence for Cancer Research (MOHW104-TDU-B-211-124-001 to M-HY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J L Arbiser or M-H Yang.

Ethics declarations

Competing interests

Emory University holds the intellectual property to imipramine blue and that Jack L Arbiser is the inventor. Emory University has licensed the intellectual property to ABBY Therapeutics.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, WH., Su, YH., Hsu, WH. et al. Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation. Oncogene 35, 2287–2298 (2016). https://doi.org/10.1038/onc.2015.291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.291

This article is cited by

Search

Quick links