Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability

Abstract

BRCA1 is a tumor-suppressor gene associated with, but not restricted to, breast and ovarian cancer and implicated in various biological functions. During mitosis, BRCA1 and its positive regulator Chk2 are localized at centrosomes and are required for the regulation of microtubule plus end assembly, thereby ensuring faithful mitosis and numerical chromosome stability. However, the function of BRCA1 during mitosis has not been defined mechanistically. To gain insights into the mitotic role of BRCA1 in regulating microtubule assembly, we systematically identified proteins interacting with BRCA1 during mitosis and found the centrosomal protein Cep72 as a novel BRCA1-interacting protein. CEP72 is frequently upregulated in colorectal cancer tissues and overexpression of CEP72 mirrors the consequences of BRCA1 loss during mitosis. In detail, the overexpression of CEP72 causes an increase in microtubule plus end assembly, abnormal mitotic spindle formation and the induction of chromosomal instability. Moreover, we show that high levels of Cep72 counteract Chk2 as a positive regulator of BRCA1 to ensure proper mitotic microtubule assembly. Thus, CEP72 represents a putative oncogene in colorectal cancer that might negatively regulate the mitotic function of BRCA1 to ensure chromosomal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  2. Silver PD, Livingston MD . Mechanisms of BRCA1 tumor suppression. Cancer Discov 2012; 2: 679–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savage IK, Harkin PD . BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J 2014.

  4. Kais Z, Parvin DJ . Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther 2008; 7: 1540–1543.

    Article  CAS  PubMed  Google Scholar 

  5. Sankaran S, Crone ED, Palazzo ER, Parvin JD . Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res 2007; 67: 11186–11194.

    Article  CAS  PubMed  Google Scholar 

  6. Starita ML, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004; 24: 8457–8466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127: 539–552.

    Article  CAS  PubMed  Google Scholar 

  8. Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B et al. The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 2010; 12: 492–499.

    Article  CAS  PubMed  Google Scholar 

  9. Ertych N, Stolz A, Stenzinger A, Weichert W, Kaulfuß S, Burfeind P et al. Increased microtubule assembly rates influence chromosomal instability in colorectal cancer. Nat Cell Biol 2014; 16: 779–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lengauer C, Kinzler WK, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  11. Wu CL, Wang WZ, Tsan TJ, Spillman MA, Phung A, Xu XL et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 1996; 14: 430–440.

    Article  CAS  PubMed  Google Scholar 

  12. Pujana AM, Han DJ, Starita ML, Stevens KN, Tewari M, Ahn JS et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007; 39: 1338–1349.

    Article  CAS  PubMed  Google Scholar 

  13. Stecklein RS, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM et al. BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci USA 2012; 109: 13650–13655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stowe RT, Wilkinson JC, Iqbal A, Stearns T . The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. Mol Biol Cell 2012; 23: 3322–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oshimori N, Li X, Ohsugi M, Yamamoto T . Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J 2009; 28: 2066–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oshimori N, Ohsugi M, Yamamoto T . The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 2006; 8: 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  17. Burrell AR, McClelland ES, Endesfelder D, Groth P, Weller MC, Shaikh N et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494: 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  19. Meijers-Heijboer H, Ouweland vd A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002; 31: 55–59.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Wang J, Gao W, Yuan BZ, Rogers J, Reed E . CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer 2004; 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Weaver Z, Linke PS, Li C, Gotay J, Wang XW et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999; 3: 389–395.

    Article  CAS  PubMed  Google Scholar 

  22. Weaver Z, Montagna C, Xu Xm, Howard T, Gadina M, Brodie SG et al. Mammary tumors in mice conditionally mutant for BRCA1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 2002; 21: 5097–5107.

    Article  CAS  PubMed  Google Scholar 

  23. Derry BW, Wilson L, Jordan AM . Low potency of taxol at microtubule minus ends: implications for its antimitotic and therapeutic mechanism. Cancer Res 1998; 58: 1177–1184.

    CAS  PubMed  Google Scholar 

  24. Brouhard JG, Stear HJ, Noetzel LT, Al-Bassam J, Kinoshita K, Harrison SC et al. XMAP215 is a processive microtubule polymerase. Cell 2008; 132: 79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gregan J, Polakova S, Zhang L, Tolić-Nørrelykke IM, Cimini D et al. Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 2011; 21: 374–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jallepalli VP, Lengauer C, Vogelstein B, Bunz F . The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 2003; 278: 20475–20479.

    Article  CAS  PubMed  Google Scholar 

  27. Starita ML, Parvin DJ . Substrates of the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther 2006; 5: 137–141.

    Article  CAS  PubMed  Google Scholar 

  28. Weichert W, Roske A, Gekeler V, Beckers T, Ebert MP, Pross M et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 2008; 9: 139–148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Linda Wordeman, Sigrid Hoyer-Fender, Bert Vogelstein, Ingrid Hoffmann and Olaf Stemmann for materials and Heike Krebber for microscopy support. We thank Dennis Vollweiter and Eric Schoger for general lab support. We thank the TCGA Research Network (http://cancergenome.nih.gov/) for the open access of gene expression data. This work was supported by the Deutsche Forschungsgemeinschaft (HB and GHB) and by a DFG funded Heisenberg professorship awarded to HB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Bastians.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüddecke, S., Ertych, N., Stenzinger, A. et al. The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability. Oncogene 35, 2398–2406 (2016). https://doi.org/10.1038/onc.2015.290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.290

This article is cited by

Search

Quick links