Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PKCδ maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback

Abstract

The existence of tumor initiating cells (TICs) has been emerged as a good therapeutic target for treatment of glioblastoma that is the most aggressive brain tumor with poor prognosis. However, the molecular mechanisms that regulate the phenotypes of TICs still remain obscure. In this study, we found that PKCδ, among PKC isoforms, is preferentially activated in TICs and acts as a critical regulator for the maintenance of TICs in glioblastoma. By modulating the expression levels or activity of PKCδ, we demonstrated that PKCδ promotes self-renewal and tumorigenic potentials of TICs. Importantly, we found that the activation of PKCδ persists in TICs through an autocrine loop with positive feedback that was driven by PKCδ/STAT3/IL-23/JAK signaling axis. Moreover, for phenotypes of TICs, we showed that PKCδ activates AKT signaling component by phosphorylation specifically on Ser473. Taken together, we proposed that TICs regulate their own population in glioblastoma through an autocrine loop with positive feedback that is driven by PKCδ-dependent secretion of cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P . Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64: 479–489.

    Article  CAS  PubMed  Google Scholar 

  2. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY . Primary brain tumours in adults. Lancet 2003; 361: 323–331.

    Article  PubMed  Google Scholar 

  3. Laperriere N, Zuraw L, Cairncross G . Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 2002; 64: 259–273.

    Article  PubMed  Google Scholar 

  4. Dirks PB . Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 2008; 26: 2916–2924.

    Article  PubMed  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  6. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  7. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 2006; 54: 850–860.

    Article  PubMed  Google Scholar 

  8. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005; 8: 323–335.

    Article  CAS  PubMed  Google Scholar 

  10. Suh Y, Obernier K, Holzl-Wenig G, Mandl C, Herrmann A, Worner K et al. Interaction between DLX2 and EGFR regulates proliferation and neurogenesis of SVZ precursors. Mol Cell Neurosci 2009; 42: 308–314.

    Article  CAS  PubMed  Google Scholar 

  11. Carrillo-Garcia C, Suh Y, Obernier K, Holzl-Wenig G, Mandl C, Ciccolini F . Multipotent precursors in the anterior and hippocampal subventricular zone display similar transcription factor signatures but their proliferation and maintenance are differentially regulated. Mol Cell Neurosci 2010; 44: 318–329.

    Article  CAS  PubMed  Google Scholar 

  12. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–15558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stiles CD, Rowitch DH . Glioma stem cells: a midterm exam. Neuron 2008; 58: 832–846.

    Article  CAS  PubMed  Google Scholar 

  14. Mandil R, Ashkenazi E, Blass M, Kronfeld I, Kazimirsky G, Rosenthal G et al. Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res 2001; 61: 4612–4619.

    CAS  PubMed  Google Scholar 

  15. Nishizuka Y . The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661–665.

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh YH, Wu TT, Huang CY, Hsieh YS, Hwang JM, Liu JY . p38 mitogen-activated protein kinase pathway is involved in protein kinase Calpha-regulated invasion in human hepatocellular carcinoma cells. Cancer Res 2007; 67: 4320–4327.

    Article  CAS  PubMed  Google Scholar 

  17. Nakashima S . Protein kinase C alpha (PKC alpha): regulation and biological function. J Biochem 2002; 132: 669–675.

    Article  CAS  PubMed  Google Scholar 

  18. Ghayur T, Hugunin M, Talanian RV, Ratnofsky S, Quinlan C, Emoto Y et al. Proteolytic activation of protein kinase C delta by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med 1996; 184: 2399–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basu A . Involvement of protein kinase C-delta in DNA damage-induced apoptosis. J Cell Mol Med 2003; 7: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu Z, Hornia A, Jiang YW, Zang Q, Ohno S, Foster DA . Tumor promotion by depleting cells of protein kinase C delta. Mol Cell Biol 1997; 17: 3418–3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Black JD . Protein kinase C-mediated regulation of the cell cycle. Front Biosci 2000; 5: D406–D423.

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez-Maqueda JG, Luna-Ulloa LB, Santoyo-Ramos P, Castaneda-Patlan MC, Robles-Flores M . Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS One 2013; 8: e58540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mauro LV, Grossoni VC, Urtreger AJ, Yang C, Colombo LL, Morandi A et al. PKC Delta (PKCdelta) promotes tumoral progression of human ductal pancreatic cancer. Pancreas 2010; 39: e31–e41.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Forman LW, Williams RM, Faller DV . Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer 2014; 14: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G . CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 2013; 31: 857–869.

    Article  CAS  PubMed  Google Scholar 

  26. Cancer Genome Atlas Research Network McLendon R Cancer Genome Atlas Research Network Friedman A Cancer Genome Atlas Research Network Bigner D Cancer Genome Atlas Research Network Van Meir EG Cancer Genome Atlas Research Network Brat DJ Cancer Genome Atlas Research Network Mastrogianakis GM et al. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  27. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 2009; 16: 463–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A . EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou YH, Tan F, Hess KR, Yung WK . The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 2003; 9: 3369–3375.

    CAS  PubMed  Google Scholar 

  31. Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 2008; 283: 10958–10966.

    Article  CAS  PubMed  Google Scholar 

  32. Yoon CH, Kim MJ, Kim RK, Lim EJ, Choi KS, An S et al. c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene 2012; 31: 4655–4666.

    Article  CAS  PubMed  Google Scholar 

  33. Heim MH . The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 1999; 19: 75–120.

    Article  CAS  PubMed  Google Scholar 

  34. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997; 90: 5013–5021.

    CAS  PubMed  Google Scholar 

  35. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97: 14720–14725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 4010–4015.

    Article  CAS  PubMed  Google Scholar 

  37. Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008; 88: 808–815.

    Article  CAS  PubMed  Google Scholar 

  38. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA et al. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 2008; 62: 505–514 discussion 514-505.

    Article  PubMed  Google Scholar 

  39. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 2008; 122: 761–768.

    Article  CAS  PubMed  Google Scholar 

  40. Son MJ, Woolard K, Nam DH, Lee J, Fine HA . SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009; 4: 440–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R et al. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 2008; 27: 2897–2909.

    Article  CAS  PubMed  Google Scholar 

  42. Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 2013; 110: 6829–6834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC . PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 2008; 22: 436–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 2009; 4: 226–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Darnell JE Jr . STATs and gene regulation. Science 1997; 277: 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  46. Darnell JE Jr, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  47. Sasse J, Hemmann U, Schwartz C, Schniertshauer U, Heesel B, Landgraf C et al. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol 1997; 17: 4677–4686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duan Z, Bradner JE, Greenberg E, Levine R, Foster R, Mahoney J et al. SD-1029 inhibits signal transducer and activator of transcription 3 nuclear translocation. Clin Cancer Res 2006; 12: 6844–6852.

    Article  CAS  PubMed  Google Scholar 

  49. Mischak H, Goodnight JA, Kolch W, Martiny-Baron G, Schaechtle C, Kazanietz MG et al. Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J Biol Chem 1993; 268: 6090–6096.

    CAS  PubMed  Google Scholar 

  50. Perletti GP, Marras E, Concari P, Piccinini F, Tashjian AH Jr . PKCdelta acts as a growth and tumor suppressor in rat colonic epithelial cells. Oncogene 1999; 18: 1251–1256.

    Article  CAS  PubMed  Google Scholar 

  51. Basu A, Pal D . Two faces of protein kinase Cdelta: the contrasting roles of PKCdelta in cell survival and cell death. ScientificWorldJournal 2010; 10: 2272–2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 2009; 28: 3949–3959.

    Article  CAS  PubMed  Google Scholar 

  53. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  54. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA . Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 2002; 99: 14506–14511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu F, Wong CS . A clonogenic survival assay of neural stem cells in rat spinal cord after exposure to ionizing radiation. Radiat Res 2005; 163: 63–71.

    Article  CAS  PubMed  Google Scholar 

  56. Kim NH, Park HJ, Oh MK, Kim IS . Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells. BMB Rep 2013; 46: 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Inagaki A, Soeda A, Oka N, Kitajima H, Nakagawa J, Motohashi T et al. Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochem Biophys Res Commun 2007; 361: 586–592.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Akio Soeda (Department of Neurological Surgery, University of Virginia, USA) for providing patient-derived glioma cells. This work was supported by the National Research Foundation (NRF) and Ministry of Science, ICT and Future Planning, Korean government, through its National Nuclear Technology Program (NRF2012M2B2B1055639 and NRF-2013M2A2A7066345).

Author Contributions

Study conception and design, collection and assembly of data, data analysis and interpretation: KR-K; study conception and design, data analysis and interpretation, manuscript writing: SY; data analysis and interpretation: HE, YK-C, CK-S, AS, HS-G, KM-J, LH-J; data analysis and interpretation, financial support: GKI; conception and design, data analysis and interpretation, financial support, final approval of manuscript: LS-J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-J Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, RK., Suh, Y., Hwang, E. et al. PKCδ maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback. Oncogene 34, 5749–5759 (2015). https://doi.org/10.1038/onc.2015.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.29

Search

Quick links