Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation

Abstract

The JAK2V617F mutation is found in most patients with a myeloproliferative neoplasm (MPN). This gain-of-function mutation dysregulates cytokine signaling and is associated with increased accumulation of DNA damage, a process likely to drive disease evolution. JAK2V617F inhibits NHE-1 upregulation in response to DNA damage and consequently represses Bcl-xL deamidation and apoptosis, thus giving rise to inappropriate cell survival. However, the mechanism whereby NHE-1 expression is inhibited by JAK2V617F is unknown. In this study, we demonstrate that the accumulation of reactive oxygen species (ROS) in cells expressing JAK2V617F compromises the NHE-1/Bcl-xL deamidation pathway by repressing NHE-1 upregulation in response to DNA damage. In JAK2V617F-positive cells, increased ROS levels results from aberrant PI3K signaling, which decreases nuclear localization of FOXO3A and decreases catalase expression. Furthermore, when compared with autologous control erythroblasts, clonally derived JAK2V617F-positive erythroblasts from MPN patients displayed increased ROS levels and reduced nuclear FOXO3A. However, in hematopoietic stem cells (HSCs), FOXO3A is largely localized within the nuclei despite the presence of JAK2V617F mutation, suggesting that JAK2-FOXO signaling has a different effect on progenitors compared with stem cells. Inactivation of FOXO proteins and elevation of intracellular ROS are characteristics common to many cancers, and hence these findings are likely to be of relevance beyond the MPN field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Calnan DR, Brunet A . The FoxO code. Oncogene 2008; 27: 2276–2288.

    Article  CAS  Google Scholar 

  2. Bakker WJ, van Dijk TB, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P et al. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 2007; 27: 3839–3854.

    Article  CAS  Google Scholar 

  3. Miyamoto K, Araki KY, Naka K, Takubo K, Yamazaki S, Matsuoka S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    Article  CAS  Google Scholar 

  4. Miyamoto K, Miyamoto T, Kato R, Yoshimura A, Motoyama N, Suda T . FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 2008; 112: 4485–4493.

    Article  CAS  Google Scholar 

  5. Tothova Z, Gilliland DG . FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1: 140–152.

    Article  CAS  Google Scholar 

  6. Fu Z, Tindall DJ . FOXOs cancer and regulation of apoptosis. Oncogene 2008; 27: 2312–2319.

    Article  CAS  Google Scholar 

  7. Pourova J, Kottova M, Voprsalova M, Pour M . Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf) 198: 15–35.

  8. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788–8793.

  9. Naughton R, Quiney C, Turner SD, Cotter TG . Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia 2009; 23: 1432–1440.

    Article  CAS  Google Scholar 

  10. Chan DW, Liu VW, Tsao GS, Yao KM, Furukawa T, Chan KK et al. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 2008; 29: 1742–1750.

    Article  CAS  Google Scholar 

  11. Rakshit S, Bagchi J, Mandal L, Paul K, Ganguly D, Bhattacharjee S et al. N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis 2009; 14: 298–308.

    Article  CAS  Google Scholar 

  12. Sikora MJ, Bauer JA, Verhaegen M, Belbin TJ, Prystowsky MB, Taylor JC et al. Anti-oxidant treatment enhances anti-tumor cytotoxicity of (-)-gossypol. Cancer Biol Ther 2008; 7: 767–776.

    Article  CAS  Google Scholar 

  13. Tsai SY, Sun NK, Lu HP, Cheng ML, Chao CC . Involvement of reactive oxygen species in multidrug resistance of a vincristine-selected lymphoblastoma. Cancer Sci 2007; 98: 1206–1214.

    Article  CAS  Google Scholar 

  14. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM . Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 2010; 704: 152–159.

    Article  CAS  Google Scholar 

  15. Campbell PJ, Green AR . The myeloproliferative disorders. N Engl J Med 2006; 355: 2452–2466.

    Article  CAS  Google Scholar 

  16. Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 2008; 112: 1402–1412.

    Article  CAS  Google Scholar 

  17. Li J, Spensberger D, Ahn JS, Anand S, Beer PA, Ghevaert C et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 2010; 116: 1528–1538.

    Article  CAS  Google Scholar 

  18. Chen E, Ahn JS, Massie CE, Clynes D, Godfrey AL, Li J et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proc Natl Acad Sci USA 2014; 111: 15190–15195.

    Article  CAS  Google Scholar 

  19. Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S et al. JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood 2014; 124: 2996–3006.

    Article  CAS  Google Scholar 

  20. Zhao R, Oxley D, Smith TS, Follows GA, Green AR, Alexander DR . DNA damage-induced Bcl-xL deamidation is mediated by NHE-1 antiport regulated intracellular pH. PLoS Biol 2007; 5: e1.

    Article  Google Scholar 

  21. Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJ, Green AR et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med 2008; 359: 2778–2789.

    Article  CAS  Google Scholar 

  22. Li J, Kent DG, Godfrey AL, Manning H, Nangalia J, Aziz A et al. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood 2014; 123: 3139–3151.

    Article  CAS  Google Scholar 

  23. Quentmeier H, MacLeod RA, Zaborski M, Drexler HG . JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 2006; 20: 471–476.

    Article  CAS  Google Scholar 

  24. Kumar AP, Chang MK, Fliegel L, Pervaiz S, Clement MV . Oxidative repression of NHE1 gene expression involves iron-mediated caspase activity. Cell Death Differ 2007; 14: 1733–1746.

    Article  CAS  Google Scholar 

  25. Akram S, Teong HF, Fliegel L, Pervaiz S, Clement MV . Reactive oxygen species-mediated regulation of the Na+-H+ exchanger 1 gene expression connects intracellular redox status with cells' sensitivity to death triggers. Cell Death Differ 2006; 13: 628–641.

    Article  CAS  Google Scholar 

  26. Jhumka Z, Pervaiz S, Clement MV . Resveratrol regulates the expression of NHE-1 by repressing its promoter activity: critical involvement of intracellular H2O2 and caspases 3 and 6 in the absence of cell death. Int J Biochem Cell Biol 2009; 41: 945–956.

    Article  CAS  Google Scholar 

  27. Gaetani GF, Ferraris AM, Rolfo M, Mangerini R, Arena S, Kirkman HN . Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996; 87: 1595–1599.

    CAS  PubMed  Google Scholar 

  28. Komatsu N, Watanabe T, Uchida M, Mori M, Kirito K, Kikuchi S et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 2003; 278: 6411–6419.

    Article  CAS  Google Scholar 

  29. Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 2005; 24: 2317–2329.

    Article  CAS  Google Scholar 

  30. Yalcin S, Marinkovic D, Mungamuri SK, Zhang X, Tong W, Sellers R et al. ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(-/-) mice. Embo J 2010; 29: 4118–4131.

    Article  CAS  Google Scholar 

  31. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  Google Scholar 

  32. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  33. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  34. Kralovics R, Passamonti F, Teo SS, Brutsche M, Tiedt R, Tichelli A et al. A gain of function mutation in Jak2 is frequently found in patients with myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  35. Kent DG, Copley MR, Benz C, Wöhrer S, Dykstra BJ, Ma E et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 2009; 113: 6342–6350.

    Article  CAS  Google Scholar 

  36. Huang Y, Domann FE . Redox modulation of AP-2 DNA binding activity in vitro. Biochem Biophys Res Commun 1998; 249: 307–312.

    Article  CAS  Google Scholar 

  37. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 2006; 203: 1657–1663.

    Article  CAS  Google Scholar 

  38. Yalcin S, Zhang X, Luciano JP, Mungamuri SK, Marinkovic D, Vercherat C et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 2008; 283: 25692–25705.

    Article  CAS  Google Scholar 

  39. Marty C, Lacout C, Droin N, Le Couédic JP, Ribrag V, Solary E et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia 2013; 27: 2187–2195.

    Article  CAS  Google Scholar 

  40. Trachootham D, Alexandre J, Huang P . Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579–591.

    Article  CAS  Google Scholar 

  41. Lin B, Tan X, Liang J, Wu S, Liu J, Zhang Q et al. A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep 2014; 4: 7041.

    PubMed  PubMed Central  Google Scholar 

  42. Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC et al. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLos Biol 2013; 11: e1001576.

    Article  CAS  Google Scholar 

  43. Fernandes MS, Reddy MM, Gonneville JR, DeRoo SC, Podar K, Griffin JD et al. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood 2009; 114: 1813–1819.

    Article  CAS  Google Scholar 

  44. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA . New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118: 1723–1735.

    Article  CAS  Google Scholar 

  45. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R . Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci USA 2003; 100: 6523–6528.

    Article  CAS  Google Scholar 

  46. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  Google Scholar 

  47. Pellicano F, Scott MT, Helgason GV, Hopcroft LE, Allan EK, Aspinall-O'Dea M et al. The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors. Stem Cells 2014; 32: 2324–2337.

    Article  CAS  Google Scholar 

  48. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  Google Scholar 

  49. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 2011; 118: 5565–5572.

    Article  CAS  Google Scholar 

  50. Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.

    Article  CAS  Google Scholar 

  51. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    Article  CAS  Google Scholar 

  52. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 1501–1510.

    Article  CAS  Google Scholar 

  53. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  Google Scholar 

  54. Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 2010; 17: 584–596.

    Article  CAS  Google Scholar 

  55. Imai Y, Takahashi A, Hanyu A, Hori S, Sato S, Naka K et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep 2014; 7: 194–207.

    Article  CAS  Google Scholar 

  56. Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC . Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol 2008; 10: 460–467.

    Article  CAS  Google Scholar 

  57. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H . WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008.

    Google Scholar 

  58. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients and staff of the Addenbrookes MPN clinic who have contributed samples to this study; Yvonne Silber for technical assistance; Philip Beer, Anna Godfrey, Christina Ortmann and Joanna Baxter (Translational Research Laboratory, University of Cambridge) for help with acquiring clinical samples; Peter Campbell (Sanger Institute) for helpful discussions; and Michael Murphy (MRC MBU) for supplying MitoQ. Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the Kay Kendall Leukaemia Fund, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre and the Leukemia & Lymphoma Society of America. DGK was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research (Ottawa, ON), and a Lady Tata Memorial Trust International Award for Research in Leukaemia (London, UK). HJP was supported by a postdoctoral fellowship from the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Green.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Li, J., Chen, E. et al. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene 35, 2235–2246 (2016). https://doi.org/10.1038/onc.2015.285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.285

This article is cited by

Search

Quick links