Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAK5-mediated E47 phosphorylation promotes epithelial–mesenchymal transition and metastasis of colon cancer

Abstract

The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial–mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell–cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shapira S, Fokra A, Arber N, Kraus S . Peptides for diagnosis and treatment of colorectal cancer. Curr Med Chem 2014; 21: 2410–2416.

    Article  CAS  PubMed  Google Scholar 

  2. Le Bras GF, Taubenslag KJ, Andl CD . The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility and tumor progression. Cell Adh Migr 2012; 6: 365–373.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS et al. EMT is the dominant program in human colon cancer. BMC Med Genomics 2011; 4: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teng Y, Li X . The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2014; 31: 367–377.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 2001; 276: 27424–27431.

    Article  CAS  PubMed  Google Scholar 

  6. Slattery C, McMorrow T, Ryan MP . Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis. FEBS Lett 2006; 580: 4021–4030.

    Article  CAS  PubMed  Google Scholar 

  7. Cubillo E, Diaz-Lopez A, Cuevas EP, Moreno-Bueno G, Peinado H, Montes A et al. E47 and Id1 interplay in epithelial-mesenchymal transition. PLoS One 2013; 8: e59948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao H, Huang A, Li P, Quan Y, Feng B, Chen X et al. E2A suppresses invasion and migration by targeting YAP in colorectal cancer cells. J Transl Med 2013; 11: 317.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li X, Liu F, Li F . PAK as a therapeutic target in gastric cancer. Expert Opin Ther Targets 2010; 14: 419–433.

    Article  PubMed  Google Scholar 

  10. He H, Baldwin GS . p21-activated kinases and gastrointestinal cancer. Biochim Biophys Acta 2013; 1833: 33–39.

    Article  CAS  PubMed  Google Scholar 

  11. Whale A, Hashim FN, Fram S, Jones GE, Wells CM . Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed) 2011; 16: 849–864.

    Article  CAS  Google Scholar 

  12. Giroux V, Dagorn JC, Iovanna JL . A review of kinases implicated in pancreatic cancer. Pancreatology 2009; 9: 738–754.

    Article  CAS  PubMed  Google Scholar 

  13. Gong W, An Z, Wang Y, Pan X, Fang W, Jiang B et al. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 2009; 125: 548–555.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Gong W, Qing H, Geng Y, Wang X, Zhang Y et al. p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010; 31: 575–582.

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Li K, Li M, Wu X, Zhang L, Ding Q et al. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J 2013; 280: 46–55.

    Article  CAS  PubMed  Google Scholar 

  16. Wang XX, Cheng Q, Zhang SN, Qian HY, Wu JX, Tian H et al. PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell. Tumour Biol 2013; 34: 2721–2729.

    Article  CAS  PubMed  Google Scholar 

  17. Fawdar S, Trotter EW, Li Y, Stephenson NL, Hanke F, Marusiak AA et al. Targeted genetic dependency screen facilitates identification of actionable mutations in FGFR4, MAP3K9, and PAK5 in lung cancer. Proc Natl Acad Sci USA 2013; 110: 12426–12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang ZP, Jiang BG, Gu XF, Zhao B, Ge RL, Zhang FB . P21-activated kinase 5 plays essential roles in the proliferation and tumorigenicity of human hepatocellular carcinoma. Acta Pharmacol Sin 2014; 35: 82–88.

    Article  CAS  PubMed  Google Scholar 

  19. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M . Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11: 1709–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wells CM, Abo A, Ridley AJ . PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci 2002; 115: 3947–3956.

    Article  CAS  PubMed  Google Scholar 

  21. Ogo A, Waterman MR, Kamps MP, Kagawa N . Protein kinase A-dependent transactivation by the E2A-Pbx1 fusion protein. J Biol Chem 1995; 270: 25340–25343.

    Article  CAS  PubMed  Google Scholar 

  22. Teachenor R, Beck K, Wright LY, Shen Z, Briggs SP, Murre C . Biochemical and phosphoproteomic analysis of the helix-loop-helix protein E47. Mol Cell Biol 2012; 32: 1671–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slattery C, Ryan MP, McMorrow T . E2A proteins: regulators of cell phenotype in normal physiology and disease. Int J Biochem Cell Biol 2008; 40: 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  24. Patel D, Chaudhary J . Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis. Biochem Biophys Res Commun 2012; 422: 146–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Shao Y, Tong Y, Shen T, Zhang J, Li Y et al. Nucleo-cytoplasmic shuttling of PAK4 modulates beta-catenin intracellular translocation and signaling. Biochim Biophys Acta 2012; 1823: 465–475.

    Article  CAS  PubMed  Google Scholar 

  26. Mehmood R, Yasuhara N, Fukumoto M, Oe S, Tachibana T, Yoneda Y . Cross-talk between distinct nuclear import pathways enables efficient nuclear import of E47 in conjunction with its partner transcription factors. Mol Biol Cell 2011; 22: 3715–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murre C, McCaw PS, Baltimore D . A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 1989; 56: 777–783.

    Article  CAS  PubMed  Google Scholar 

  28. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490: 116–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tijchon E, Havinga J, van Leeuwen FN, Scheijen B . B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2013; 27: 541–552.

    Article  CAS  PubMed  Google Scholar 

  30. Lee SH, Hao E, Kiselyuk A, Shapiro J, Shields DJ, Lowy A et al. The Id3/E47 axis mediates cell-cycle control in human pancreatic ducts and adenocarcinoma. Mol Cancer Res 2011; 9: 782–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spender LC, Inman GJ . Developments in Burkitt's lymphoma: novel cooperations in oncogenic MYC signaling. Cancer Manag Res 2014; 6: 27–38.

    PubMed  PubMed Central  Google Scholar 

  32. Chiaro C, Lazarova DL, Bordonaro M . Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells. Biochem Biophys Res Commun 2012; 428: 121–126.

    Article  CAS  PubMed  Google Scholar 

  33. Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 2004; 117: 2827–2839.

    Article  CAS  PubMed  Google Scholar 

  34. Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 2006; 66: 9543–9556.

    Article  CAS  PubMed  Google Scholar 

  35. Cochrane SW, Zhao Y, Welner RS, Sun XH . Balance between Id and E proteins regulates myeloid-versus-lymphoid lineage decisions. Blood 2009; 113: 1016–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M . Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3 F. Cancer Res 2010; 70: 3823–3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen XS, Zhang YH, Cai QY, Yao ZX . ID2: A negative transcription factor regulating oligodendroglia differentiation. J Neurosci Res 2012; 90: 925–932.

    Article  PubMed  Google Scholar 

  38. Johnson SE, Wang X, Hardy S, Taparowsky EJ, Konieczny SF . Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation. Mol Cell Biol 1996; 16: 1604–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sloan SR, Shen CP, McCarrick-Walmsley R, Kadesch T . Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol Cell Biol 1996; 16: 6900–6908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lluis F, Ballestar E, Suelves M, Esteller M, Munoz-Canoves P . E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J 2005; 24: 974–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011; 30: 2463–2474.

    Article  CAS  PubMed  Google Scholar 

  42. Lingbeck JM, Trausch-Azar JS, Ciechanover A, Schwartz AL . E12 and E47 modulate cellular localization and proteasome-mediated degradation of MyoD and Id1. Oncogene 2005; 24: 6376–6384.

    Article  CAS  PubMed  Google Scholar 

  43. Shao Y, Li Y, Zhang J, Liu D, Liu F, Zhao Y et al. Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic Acids Res 2010; 38: 2813–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, Ke Q, Li Y, Liu F, Zhu G, Li F . DGCR6L a novel PAK4 interaction protein, regulates PAK4-mediated migration of human gastric cancer cell via LIMK1. Int J Biochem Cell Biol 2010; 42: 70–79.

    Article  CAS  PubMed  Google Scholar 

  45. Berchuck A, Soisson AP, Clarke-Pearson DL, Soper JT, Boyer CM, Kinney RB et al. Immunohistochemical expression of CA 125 in endometrial adenocarcinoma: correlation of antigen expression with metastatic potential. Cancer Res 1989; 49: 2091–2095.

    CAS  PubMed  Google Scholar 

  46. Guo Q, Su N, Zhang J, Li X, Miao Z, Wang G et al. PAK4 kinase-mediated SCG10 phosphorylation involved in gastric cancer metastasis. Oncogene 2014; 33: 3277–3287.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Stephen J Brandt and Akira Kato for providing essential expression vectors. We also thank Dr Funan Liu for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (Nos 90813038, 31371424, 31171360, 31000627, 81201659 and 81230077), Doctoral fund of Ministry of Education of China (No. 20102104110016) and Ministry of Education of China (IRT 13101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, X., Guo, B. et al. PAK5-mediated E47 phosphorylation promotes epithelial–mesenchymal transition and metastasis of colon cancer. Oncogene 35, 1943–1954 (2016). https://doi.org/10.1038/onc.2015.259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.259

This article is cited by

Search

Quick links