Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis

Abstract

Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blum R, Kloog Y . Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5: e1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen J, Zhao S, Nakada K, Kuge Y, Tamaki N, Okada F et al. Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am J Pathol 2003; 162: 1283–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shang Y, Mao Y, Batson J, Scales SJ, Phillips G, Lackner MR et al. Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake. Mol Cancer Ther 2008; 7: 2599–2608.

    Article  CAS  PubMed  Google Scholar 

  4. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 2013; 19: 1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keshari KR, Sriram R, Koelsch BL, Van Criekinge M, Wilson DM, Kurhanewicz J et al. Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas. Cancer Res 2013; 73: 529–538.

    Article  CAS  PubMed  Google Scholar 

  6. Andersson S, D'Arcy P, Larsson O, Sehat B . Focal adhesion kinase (FAK) activates and stabilizes IGF-1 receptor. Biochem Biophys Res Commun 2009; 387: 36–41.

    Article  CAS  PubMed  Google Scholar 

  7. Arbet-Engels C, Janknecht R, Eckhart W . Role of focal adhesion kinase in MAP kinase activation by insulin-like growth factor-I or insulin. FEBS Lett 1999; 454: 252–256.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng D, Kurenova E, Ucar D, Golubovskaya V, Magis A, Ostrov D et al. Targeting of the protein interaction site between FAK and IGF-1 R. Biochem Biophys Res Commun 2009; 388: 301–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Hochwald SN . The role of FAK in tumor metabolism and therapy. Pharmacol Ther 2014; 142: 154–163.

    Article  CAS  PubMed  Google Scholar 

  10. Lim SK, Choi YW, Lim IK, Park TJ . BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29: 901–913.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Lambert MP, Bunch C, Barber K, Wade WS, Krafft GA et al. Focal adhesion kinase expressed by nerve cell lines shows increased tyrosine phosphorylation in response to Alzheimer's A beta peptide. J Biol Chem 1994; 269: 25247–25250.

    CAS  PubMed  Google Scholar 

  12. Zhu J, Wu YN, Zhang W, Zhang XM, Ding X, Li HQ et al. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS One 2014; 9: e87904.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee HZ, Yeh FT, Wu CH . The effect of elevated extracellular glucose on adherens junction proteins in cultured rat heart endothelial cells. Life Sci 2004; 74: 2085–2096.

    Article  CAS  PubMed  Google Scholar 

  14. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ . The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 2010; 11: 802–814.

    Article  CAS  PubMed  Google Scholar 

  15. Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096.

    Article  PubMed  Google Scholar 

  16. Schultze A, Fiedler W . Clinical importance and potential use of small molecule inhibitors of focal adhesion kinase. Anticancer Agents Med Chem 2011; 11: 593–599.

    Article  CAS  PubMed  Google Scholar 

  17. Tomaino B, Cappello P, Capello M, Fredolini C, Sperduti I, Migliorini P et al. Circulating autoantibodies to phosphorylated alpha-enolase are a hallmark of pancreatic cancer. J Proteome Res 2011; 10: 105–112.

    Article  CAS  PubMed  Google Scholar 

  18. Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res 2014; 20: 2595–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC . Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452: 181–186.

    Article  CAS  PubMed  Google Scholar 

  20. Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 2013; 123: 1068–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331: 1199–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai Y et al. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov 2013; 3: 444–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hecker TP, Ding Q, Rege TA, Hanks SK, Gladson CL . Overexpression of FAK promotes Ras activity through the formation of a FAK/p120RasGAP complex in malignant astrocytoma cells. Oncogene 2004; 23: 3962–3971.

    Article  CAS  PubMed  Google Scholar 

  25. Ward KK, Tancioni I, Lawson C, Miller NL, Jean C, Chen XL et al. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression. Clin Exp Metastasis 2013; 30: 579–594.

    Article  CAS  PubMed  Google Scholar 

  26. Serrels A, McLeod K, Canel M, Kinnaird A, Graham K, Frame MC et al. The role of focal adhesion kinase catalytic activity on the proliferation and migration of squamous cell carcinoma cells. Int J Cancer 2012; 131: 287–297.

    Article  CAS  PubMed  Google Scholar 

  27. Muller G, Jung C, Wied S, Welte S, Frick W . Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components. Biochemistry 2001; 40: 14603–14620.

    Article  CAS  PubMed  Google Scholar 

  28. Muller G, Wied S, Frick W . Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 2000; 20: 4708–4723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng D, Golubovskaya V, Kurenova E, Wood C, Massoll NA, Ostrov D et al. A novel strategy to inhibit FAK and IGF-1 R decreases growth of pancreatic cancer xenografts. Mol Carcinog 2010; 49: 200–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, He D, Zajac-Kaye M, Hochwald SN . A small molecule FAK kinase inhibitor, GSK2256098, inhibits growth and survival of pancreatic ductal adenocarcinoma cells. Cell Cycle 2014; 13: 3143–3149.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee SH, Lee YJ, Park SW, Kim HS, Han HJ . Caveolin-1 and integrin beta1 regulate embryonic stem cell proliferation via p38 MAPK and FAK in high glucose. J Cell Physiol 2011; 226: 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  32. Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R . Alpha-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012: 156795.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mikuriya K, Kuramitsu Y, Ryozawa S, Fujimoto M, Mori S, Oka M et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol 2007; 30: 849–855.

    CAS  PubMed  Google Scholar 

  34. Sudhakaran PR, Viji RI, Kiran MS, Sameer Kumar VB . Endothelial cell-laminin interaction: modulation of LDH expression involves alpha6beta4 integrin-FAK-p38MAPK pathway. Glycoconj J 2009; 26: 697–704.

    Article  CAS  PubMed  Google Scholar 

  35. Tornatore TF, Dalla Costa AP, Clemente CF, Judice C, Rocco SA, Calegari VC et al. A role for focal adhesion kinase in cardiac mitochondrial biogenesis induced by mechanical stress. Am J Physiol Heart Circ Physiol 2011; 300: H902–H912.

    Article  CAS  PubMed  Google Scholar 

  36. Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 2006; 116: 217–227.

    Article  CAS  PubMed  Google Scholar 

  37. Ucar DA, Magis AT, He DH, Lawrence NJ, Sebti SM, Kurenova E et al. Inhibiting the interaction of cMET and IGF-1 R with FAK effectively reduces growth of pancreatic cancer cells in vitro and in vivo. Anticancer Agents Med Chem 2013; 13: 595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

UD and NH are supported by an NIH (National Institute of Mental Health) grant R00CA143229 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Hochwald.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Gao, Q., Zhou, Y. et al. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 35, 1926–1942 (2016). https://doi.org/10.1038/onc.2015.256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.256

This article is cited by

Search

Quick links