Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endothelial CXCR7 regulates breast cancer metastasis

Subjects

Abstract

Atypical chemokine receptor CXCR7 (ACKR3) functions as a scavenger receptor for chemokine CXCL12, a molecule that promotes multiple steps in tumor growth and metastasis in breast cancer and multiple other malignancies. Although normal vascular endothelium expresses low levels of CXCR7, marked upregulation of CXCR7 occurs in tumor vasculature in breast cancer and other tumors. To investigate effects of endothelial CXCR7 in breast cancer, we conditionally deleted this receptor from vascular endothelium of adult mice, generating CXCR7ΔEND/ΔEND animals. CXCR7ΔEND/ΔEND mice appeared phenotypically normal, although these animals exhibited a modest 35±3% increase in plasma CXCL12 as compared with control. Using two different syngeneic, orthotopic tumor implant models of breast cancer, we discovered that CXCR7ΔEND/ΔEND mice had significantly greater local recurrence of cancer following resection, elevated numbers of circulating tumor cells and more spontaneous metastases. CXCR7ΔEND/ΔEND mice also showed greater experimental metastases following intracardiac injection of cancer cells. These results establish that endothelial CXCR7 limits breast cancer metastasis at multiple steps in the metastatic cascade, advancing understanding of CXCL12 pathways in tumor environments and informing ongoing drug development targeting CXCR7 in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

    Article  CAS  PubMed  Google Scholar 

  2. Ali S, Lazennec G . Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev 2007; 26: 401–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teicher B, Fricker S . CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010; 16: 2927–2931.

    Article  CAS  PubMed  Google Scholar 

  4. Orimo A, Gupta P, Sgroi D, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    CAS  PubMed  Google Scholar 

  5. Zhang X, Jin X, Malladi S, Zou Y, Wen Y, Brogi E et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013; 154: 1060–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanon M et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  PubMed  Google Scholar 

  7. Singh S, Srivastava S, Bhardwaj A, Owen L, Singh A . CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br J Cancer 2010; 103: 1671–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoellenriegel J, Zboralski D, Maasch C, Rosin N, Wierda W, Keating M et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 2014; 123: 1032–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H . Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 2008; 99: 539–542.

    Article  CAS  PubMed  Google Scholar 

  10. Xu T, Shen H, Liu L, Shu Y . The impact of chemokine receptor CXCR4 on breast cancer prognosis: a meta-analysis. Cancer Epidemiol 2013; 37: 725–731.

    Article  CAS  PubMed  Google Scholar 

  11. Wald O, Shapira O, Izhar U . CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics 2013; 3: 26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miao Z, Luker K, Summers B, Berahovich R, Bhojani M, Rehemtulla A et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 2007; 104: 15735–15740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta K et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008; 283: 4283–4294.

    Article  CAS  PubMed  Google Scholar 

  14. Yao X, Zhou L, Han S, Chen Y . High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer. J Int Med Res 2011; 39: 1253–1264.

    Article  CAS  PubMed  Google Scholar 

  15. D'Alterio C, Consales C, Polimeno M, Franco R, Cindolo L, Portella L et al. Concomitant CXCR4 and CXCR7 expression predicts poor prognosis in renal cancer. Curr Cancer Drug Targets 2010; 10: 772–781.

    Article  CAS  PubMed  Google Scholar 

  16. Tachezy M, Zander H, Gebauer F, von Loga K, Pantel K, Izbicki J et al. CXCR7 expression in esophageal cancer. J Transl Med 2013; 11: 238.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liberman J, Sartelet H, Flahaut M, Muhlethaler-Mottet A, Coulon A, Nyalendo C et al. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS One 2012; 7: e43665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D'Alterio C, Avallone A, Tatangelo F, Delrio P, Pecori B, Cella L et al. A prognostic model comprising pT stage, N status and the chemokine receptors CXCR4 and CXCR7 powerfully predicts outcome in neo-adjuvant resistant rectal cancer patients. Int J Cancer 2013; 135: 379–390.

    Article  Google Scholar 

  19. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff R, Li M et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci USA 2007; 104: 14759–14764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerrits H, van Ingen Schenau D, Bakker N, van Disseldorp A, Strik A, Hermens L et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 2008; 46: 235–245.

    Article  CAS  PubMed  Google Scholar 

  21. Madden S, Cook B, Nacht M, Weber W, Callahan M, Jiang Y et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 2004; 165: 601–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maishi N, Ohga N, Hida Y, Akiyama K, Kitayama K, Osawa T et al. CXCR7: a novel tumor endothelial marker in renal cell carcinoma. Pathol Int 2012; 62: 309–317.

    Article  CAS  PubMed  Google Scholar 

  23. Gőthert J, Gustin S, Hall M, Green A, Gőttgens B, Izon D et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 2005; 105: 2724–2732.

    Article  PubMed  Google Scholar 

  24. Liao Y, Day K, Damon D, Duling B . Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci USA 2001; 98: 9989–9994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suárez Y, Fernández-Hernando C, Yu J, Gerber S, Harrison K, Pober J et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 2008; 105: 14082–14087.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ding B-S, Cao Z, Lis R, Nolan D, Guo P, Simons M et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2013; 505: 97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boldajipour B, Mahabaleshwar S, Kardash E, Reichman-Fried M, Blaser H, Minina S et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132: 463–473.

    Article  CAS  PubMed  Google Scholar 

  28. Luker K, Steele J, Mihalko L, Luker G . Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 2010; 29: 4599–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coleman R . Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12: 6243s–6249s.

    Article  PubMed  Google Scholar 

  30. Ewens A, Mihich E, Ehrke M . Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 2005; 25: 3905–3915.

    PubMed  Google Scholar 

  31. Luker K, Lewin S, Mihalko L, Schmidt B, Winkler J, Coggins N et al. Scavenging of CXCL12 by CXCR7 regulates tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012; 31: 4570–4578.

    Article  Google Scholar 

  32. Guillemot E, Karimdjee-Soilhi B, Pradelli E, Benchetrit M, Goquet-Surmenian E, Millet M et al. CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver. Br J Cancer 2012; 107: 1944–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dang S, Peng Y, Ye L, Wang Y, Qian Z, Chen Y et al. Stimulation of TLR4 by LMW-HA induces metastasis in human papillary thyroid carcinoma through CXCR7. Clin Dev Immunol 2013; 2013: 712561.

    PubMed  PubMed Central  Google Scholar 

  34. Xue T, Chen R, Han D, Chen J, Xue Q, Gao D et al. Down-regulation of CXCR7 inhibits the growth and lung metastasis of human hepatocellular carcinoma cells with highly metastatic potential. Exp Ther Med 2012; 3: 117–123.

    Article  CAS  PubMed  Google Scholar 

  35. Burns J, Summers B, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goquet-Surmenian E, Richard-Fiardo P, Guillemot E, Benchetrit M, Gomez-Brouchet A, Buzzo P et al. CXCR7-mediated progression of osteosarcoma in the lungs. Br J Cancer 2013; 109: 1579–1585.

    Article  Google Scholar 

  37. Walters M, Ebsworth K, Berahovich R, Penfold M, Liu S, Al Omran R et al. Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats. Br J Cancer 2014; 110: 1179–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berahovich R, Zabel B, Lewen S, Walters M, Ebsworth K, Wang Y et al. Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 2014; 141: 111–122.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Li G, Stanco A, Long J, Crawford D, Potter G et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011; 69: 61–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Alcaniz J, Haege S, Mueller W, Pla R, Mackay F, Schulz S et al. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 2011; 69: 77–90.

    Article  CAS  PubMed  Google Scholar 

  41. Dona E, Barry J, Valentin G, Quirin C, Khmelinskii A, Kunze A et al. Directional tissue migration through a self-generated chemokine gradient. Nature 2013; 503: 285–289.

    Article  CAS  PubMed  Google Scholar 

  42. Venkiteswaran G, Lewellis S, Wang J, Reynolds E, Nicholson C, Knaut H . Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell 2013; 155: 674–687.

    Article  CAS  PubMed  Google Scholar 

  43. Cavnar S, Ray P, Moudgil P, Chang S, Luker K, Linderman J et al. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12-isoforms in breast cancer chemotaxis. Integr Biol 2014; 6: 564–576.

    Article  CAS  Google Scholar 

  44. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6: 17–32.

    Article  CAS  PubMed  Google Scholar 

  45. Potter S, Dwyer R, Curran C, Hennesy E, Harrington K, Griffin D et al. Systemic chemokine levels in breast cancer patients and their relationship with circulating menstrual hormones. Breast Cancer Res Treat 2009; 115: 279–287.

    Article  CAS  PubMed  Google Scholar 

  46. Zabel B, Wang Y, Lewen S, Berahovich R, Penfold M, Zhang P et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 2009; 183: 3204–3211.

    Article  CAS  PubMed  Google Scholar 

  47. Kochetkova M, Kumar S, McColl S . Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ 2009; 16: 664–673.

    Article  CAS  PubMed  Google Scholar 

  48. Sun Y, Mao X, Fan C, Liu C, Guo A, Guan S et al. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol 2014; 35: 7765–7773.

    Article  CAS  PubMed  Google Scholar 

  49. Cruz-Orengo L, Holman D, Dorsey D, Zhou L, Zhang P, Wright M et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 2011; 208: 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitamura T, Qian B-Z, Pollard J . Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15: 73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raggo C, Ruhl R, McAllister S, Koon H, Dezube B, Fruh K et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 2005; 65: 5084–5095.

    Article  CAS  PubMed  Google Scholar 

  52. Totonchy J, Osborn J, Botto S, Clepper L, Moses A . Aberrant proliferation in CXCR7+ endothelial cells via degradation of the retinoblastoma protein. PLoS One 2013; 8: e69828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Casanovas O, Hicklin D, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  CAS  PubMed  Google Scholar 

  54. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C et al. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA 2006; 103: 3351–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cullen M, Seaman S, Chaudhary A, Yang M, Hilton M, Logsdon D et al. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res 2009; 69: 6021–6026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yokoyama K, Ishikawa N, Igarahsi S, Kawano N, Hattori K, Miyazaki T et al. Discovery of potent CCR4 antagonists: synthesis and structure-activity relationship study of 2,4-diaminoquinazolines. Bioorg Med Chem 2008; 16: 7021–7031.

    Article  CAS  PubMed  Google Scholar 

  57. Walters M, Ebsworth K, Sullivan T, Zhang P, Powers J, Jaen J et al. CCR9 inhibition does not interfere with the development of immune tolerance to oral antigens. Immunol Lett 2013; 151: 44–47.

    Article  CAS  PubMed  Google Scholar 

  58. Smith M, Luker K, Garbow J, Prior J, Jackson E, Piwnica-Worms D et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004; 64: 8604–8612.

    Article  CAS  PubMed  Google Scholar 

  59. Ray P, Mihalko L, Coggins N, Moudgil P, Ehrlich A, Luker K et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int J Biochem Cell Biol 2012; 44: 669–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luker G, Pica C, Song J, Luker K, Piwnica-Worms D . Imaging 26 S proteasome activity and inhibition in living mice. Nat Med 2003; 9: 969–973.

    Article  CAS  PubMed  Google Scholar 

  61. Fenner J, Stacer A, Winterroth F, Johnson T, Luker K, Luker G . Macroscopic stiffness of breast tumors predicts metastasis. Sci Rep 2014; 4: 5512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salomonnson E, Stacer A, Ehrlich A, Luker K, Luker G . Imaging CXCL12-CXCR4 signaling in ovarian cancer therapy. PLoS One 2013; 8: e51500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao S, Chang S, Linderman J, Feng F, Luker G . A comprehensive analysis of CXCL12 isoforms in breast cancer. Transl Oncol 2014; 7: 429–438.

    Article  PubMed Central  Google Scholar 

  64. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Mark Penfold and ChemoCentryx for CXCR7 loxP mice and antibody 11G8. Dr Jun-Lin Guan provided SCL CreERT through courteous permission of Dr Glenn Begley. We thank Dr Aaron Robida from the University of Michigan Flow Cytometry Core for assistance. Research was supported by United States National Institute of Health grants R21CA182333, R01CA136553, R01CA142750, R01CA170198 and P50CA093990.

Author Contributions

ACS, JF, SPC, KS and GDL performed experiments and analyzed data. KEL contributed new reagents. SZ and SLC performed GSEA analyses. KEL and GDL conceptualized and directed the research. ACS, JF, SPC and GDL wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Luker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stacer, A., Fenner, J., Cavnar, S. et al. Endothelial CXCR7 regulates breast cancer metastasis. Oncogene 35, 1716–1724 (2016). https://doi.org/10.1038/onc.2015.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.236

This article is cited by

Search

Quick links