Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acquisition of estrogen independence induces TOB1-related mechanisms supporting breast cancer cell proliferation

Abstract

Resistance to therapies targeting the estrogen pathway remains a challenge in the treatment of estrogen receptor-positive breast cancer. To address this challenge, a systems biology approach was used. A library of small interfering RNAs targeting an estrogen receptor (ER)- and aromatase-centered network identified 46 genes that are dispensable in estrogen-dependent MCF7 cells, but are selectively required for the survival of estrogen-independent MCF7-derived cells and multiple additional estrogen-independent breast cancer cell lines. Integration of this information identified a tumor suppressor gene TOB1 as a critical determinant of estrogen-independent ER-positive breast cell survival. Depletion of TOB1 selectively promoted G1 phase arrest and sensitivity to AKT and mammalian target of rapmycin (mTOR) inhibitors in estrogen-independent cells but not in estrogen-dependent cells. Phosphoproteomic profiles from reverse-phase protein array analysis supported by mRNA profiling identified a significant signaling network reprogramming by TOB1 that differed in estrogen-sensitive and estrogen-resistant cell lines. These data support a novel function for TOB1 in mediating survival of estrogen-independent breast cancers. These studies also provide evidence for combining TOB1 inhibition and AKT/mTOR inhibition as a therapeutic strategy, with potential translational significance for the management of patients with ER-positive breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. American_Cancer_Society Cancer Facts & Figures 2013. American Cancer Society: Atlanta, 2013.

  2. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 2003; 22: 7316–7339.

    Article  CAS  Google Scholar 

  3. Levin ER . Membrane oestrogen receptor alpha signalling to cell functions. J Physiol 2009; 587: 5019–5023.

    Article  CAS  Google Scholar 

  4. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  Google Scholar 

  5. Jansen MP, Knijnenburg T, Reijm EA, Simon I, Kerkhoven R, Droog M et al. Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res 2013; 73: 6632–6641.

    Article  CAS  Google Scholar 

  6. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 2013; 45: 1446–1451.

    Article  CAS  Google Scholar 

  7. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 2013; 45: 1439–1445.

    Article  CAS  Google Scholar 

  8. Britton DJ, Hutcheson IR, Knowlden JM, Barrow D, Giles M, McClelland RA et al. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 2006; 96: 131–146.

    Article  CAS  Google Scholar 

  9. Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 2011; 71: 6773–6784.

    Article  CAS  Google Scholar 

  10. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY et al. Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 2001; 61: 5985–5991.

    CAS  PubMed  Google Scholar 

  11. Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T et al. Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 2013; 137: 397–406.

    Article  CAS  Google Scholar 

  12. Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC, Clarke R . BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J 2010; 24: 2040–2055.

    Article  CAS  Google Scholar 

  13. Garcia-Becerra R, Santos N, Diaz L, Camacho J . Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14: 108–145.

    Article  Google Scholar 

  14. Chitre M, Reimers KM . Considerations for payers in managing hormone receptor-positive advanced breast cancer. Clinicoecon Outcomes Res 2014; 6: 331–339.

    PubMed  PubMed Central  Google Scholar 

  15. Astsaturov I, Ratushny V, Sukhanova A, Einarson MB, Bagnyukova T, Zhou Y et al. Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal 2010. 3ra67.

  16. Kim B, Wang S, Lee JM, Jeong Y, Ahn T, Son DS et al. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 2014; 34: 1083–1093.

    Article  Google Scholar 

  17. Saj A, Arziman Z, Stempfle D, van Belle W, Sauder U, Horn T et al. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 2010; 18: 862–876.

    Article  CAS  Google Scholar 

  18. Bader GD, Hogue CW . BIND—a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 2000; 16: 465–477.

    Article  CAS  Google Scholar 

  19. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M . BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006; 34: D535–D539.

    Article  CAS  Google Scholar 

  20. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D . DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002; 30: 303–305.

    Article  CAS  Google Scholar 

  21. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P et al. Human protein reference database—2006 update. Nucleic Acids Res 2006; 34: D411–D414.

    Article  CAS  Google Scholar 

  22. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 2014; 42: D358–D363.

    Article  CAS  Google Scholar 

  23. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012; 40: D857–D861.

    Article  CAS  Google Scholar 

  24. Tarcea VG, Weymouth T, Ade A, Bookvich A, Gao J, Mahavisno V et al. Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res 2009; 37: D642–D646.

    Article  CAS  Google Scholar 

  25. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37: D412–D416.

    Article  CAS  Google Scholar 

  26. Acevedo ML, Kraus WL . Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor alpha-dependent transcription with chromatin templates. Mol Cell Biol 2003; 23: 335–348.

    Article  CAS  Google Scholar 

  27. Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO J 2004; 23: 4813–4823.

    Article  CAS  Google Scholar 

  28. Tang S, Han H, Bajic VB . ERGDB: estrogen responsive genes database. Nucleic Acids Res 2004; 32: D533–D536.

    Article  CAS  Google Scholar 

  29. Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J et al. MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 1997; 57: 3486–3493.

    CAS  Google Scholar 

  30. Clarke R, Brunner N, Katzenellenbogen BS, Thompson EW, Norman MJ, Koppi C et al. Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo. Proc Natl Acad Sci USA 1989; 86: 3649–3653.

    Article  CAS  Google Scholar 

  31. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  32. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  33. Helms MW, Kemming D, Contag CH, Pospisil H, Bartkowiak K, Wang A et al. TOB1 is regulated by EGF-dependent HER2 and EGFR signaling, is highly phosphorylated, and indicates poor prognosis in node-negative breast cancer. Cancer Res 2009; 69: 5049–5056.

    Article  CAS  Google Scholar 

  34. Suzuki T, KT J, Ajima R, Nakamura T, Yoshida Y, Yamamoto T . Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev 2002; 16: 1356–1370.

    Article  Google Scholar 

  35. Yoshida Y, Nakamura T, Komoda M, Satoh H, Suzuki T, Tsuzuku JK et al. Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev 2003; 17: 1201–1206.

    Article  CAS  Google Scholar 

  36. Suzuki T, Tsuzuku J, Hayashi A, Shiomi Y, Iwanari H, Mochizuki Y et al. Inhibition of DNA damage-induced apoptosis through Cdc7-mediated stabilization of Tob. J Biol Chem 2012; 287: 40256–40265.

    Article  CAS  Google Scholar 

  37. Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ et al. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010; 16: 4532–4542.

    Article  CAS  Google Scholar 

  38. O'Malley S, Su H, Zhang T, Ng C, Ge H, Tang CK . TOB suppresses breast cancer tumorigenesis. Int J Cancer 2009; 125: 1805–1813.

    Article  CAS  Google Scholar 

  39. Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y et al. Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene 1996; 12: 705–713.

    CAS  Google Scholar 

  40. Suzuki T, Matsuda S, Tsuzuku JK, Yoshida Y, Yamamoto T . A serine/threonine kinase p90rsk1 phosphorylates the anti-proliferative protein Tob. Genes Cells 2001; 6: 131–138.

    Article  CAS  Google Scholar 

  41. Caravatta L, Sancilio S, di Giacomo V, Rana R, Cataldi A, Di Pietro R . PI3-K/Akt-dependent activation of cAMP-response element-binding (CREB) protein in Jurkat T leukemia cells treated with TRAIL. J Cell Physiol 2008; 214: 192–200.

    Article  CAS  Google Scholar 

  42. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM . Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 2014; 15: 1139–1153.

    Article  CAS  Google Scholar 

  43. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004.

    Article  CAS  Google Scholar 

  44. Porter AC, Vaillancourt RR . Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 1998; 17: 1343–1352.

    Article  CAS  Google Scholar 

  45. Scaltriti M, Baselga J . The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006; 12: 5268–5272.

    Article  CAS  Google Scholar 

  46. Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2012; 2: 172–189.

    Article  CAS  Google Scholar 

  47. Gritsch D, Maurer M, Zulehner N, Wesierska-Gadek J . Tamoxifen enhances the anti-proliferative effect of roscovitine, a selective cyclin-dependent kinase inhibitor, on human ER-positive human breast cancer cells. J Exp Ther Oncol 2011; 9: 37–45.

    CAS  PubMed  Google Scholar 

  48. Nair BC, Vallabhaneni S, Tekmal RR, Vadlamudi RK . Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res 2011; 13: R80.

    Article  CAS  Google Scholar 

  49. Xia W, Petricoin EF 3rd, Zhao S, Liu L, Osada T, Cheng Q et al. An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models. Breast Cancer Res 2013; 15: R85.

    Article  Google Scholar 

  50. Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y . Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 2009; 284: 18085–18095.

    Article  CAS  Google Scholar 

  51. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 2008; 105: 20380–20385.

    Article  CAS  Google Scholar 

  52. Huang, da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169–W175.

    Article  Google Scholar 

  53. Kim SY, Dunn IF, Firestein R, Gupta P, Wardwell L, Repich K et al. CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One 2010; 5: e8979.

    Article  Google Scholar 

  54. Solimini NL, Xu Q, Mermel CH, Liang AC, Schlabach MR, Luo J et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 2012; 337: 104–109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Flow Cytometry and Cell Sorting Shared Resource at the Lombardi Comprehensive Cancer Center, which is partially supported by NIH/NCI grant P30-CA051008. We also thank Wei Xu, Alan Zwart, David Goldstein, Annie Zuo and Yuri Gusev for their technical assistance. This study was supported by R01CA050633, CA51880, U54 CA149147 (to LMW), R01CA63366 and R21CA181287 (to EAG), and by the subsidy of the Russian Government to support the program of competitive growth of Kazan Federal University (to IS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Weiner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YW., Nasto, R., Varghese, R. et al. Acquisition of estrogen independence induces TOB1-related mechanisms supporting breast cancer cell proliferation. Oncogene 35, 1643–1656 (2016). https://doi.org/10.1038/onc.2015.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.226

This article is cited by

Search

Quick links