Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage

Subjects

Abstract

Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knockdown sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  2. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 2001; 19: 666–675.

    Article  CAS  Google Scholar 

  3. Madersbacher S, Hochreiter W, Burkhard F, Thalmann GN, Danuser H, Markwalder R et al. Radical cystectomy for bladder cancer today–a homogeneous series without neoadjuvant therapy. J Clin Oncol 2003; 21: 690–696.

    Article  Google Scholar 

  4. von der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 2000; 18: 3068–3077.

    Article  CAS  Google Scholar 

  5. Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 2003; 349: 859–866.

    Article  CAS  Google Scholar 

  6. Shah JB, McConkey DJ, Dinney CP . New strategies in muscle-invasive bladder cancer: on the road to personalized medicine. Clin Cancer Res 2011; 17: 2608–2612.

    Article  Google Scholar 

  7. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31: 1869–1883.

    Article  CAS  Google Scholar 

  8. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  Google Scholar 

  9. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL . A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010; 24: 72–85.

    Article  CAS  Google Scholar 

  10. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  Google Scholar 

  11. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 2006; 103: 12405–12410.

    Article  CAS  Google Scholar 

  12. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006; 125: 1253–1267.

    Article  CAS  Google Scholar 

  13. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007; 17: 2054–2060.

    Article  CAS  Google Scholar 

  14. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  Google Scholar 

  15. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biol 2009; 11: 1444–1450.

    Article  CAS  Google Scholar 

  16. Fernandez LA, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 2012; 31: 1923–1937.

    Article  Google Scholar 

  17. Hall CA, Wang R, Miao J, Oliva E, Shen X, Wheeler T et al. Hippo pathway effector Yap is an ovarian cancer oncogene. Cancer Res 2010; 70: 8517–8525.

    Article  CAS  Google Scholar 

  18. Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene 2011; 30: 2810–2822.

    Article  CAS  Google Scholar 

  19. Proctor AJ, Coombs LM, Cairns JP, Knowles MA . Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene 1991; 6: 789–795.

    CAS  PubMed  Google Scholar 

  20. Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW et al. Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer 2013; 13: 349.

    Article  CAS  Google Scholar 

  21. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 2001; 276: 15164–15173.

    Article  CAS  Google Scholar 

  22. Basu S, Totty NF, Irwin MS, Sudol M, Downward J . Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 2003; 11: 11–23.

    Article  CAS  Google Scholar 

  23. Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T et al. Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 2008; 15: 1752–1759.

    Article  CAS  Google Scholar 

  24. Ehsanian R, Brown M, Lu H, Yang XP, Pattatheyil A, Yan B et al. YAP dysregulation by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation, survival and migration in head and neck cancer subsets. Oncogene 2010; 29: 6160–6171.

    Article  CAS  Google Scholar 

  25. Imanaka Y, Tsuchiya S, Sato F, Shimada Y, Shimizu K, Tsujimoto G . MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet 2011; 56: 270–276.

    Article  CAS  Google Scholar 

  26. Torti D, Trusolino L . Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3: 623–636.

    Article  CAS  Google Scholar 

  27. Roos WP, Kaina B . DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2013; 332: 237–248.

    Article  CAS  Google Scholar 

  28. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    Article  CAS  Google Scholar 

  29. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  Google Scholar 

  30. Bressler NM, Bressler SB . Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci 2000; 41: 624–628.

    CAS  PubMed  Google Scholar 

  31. Belyanskaya LL, Hopkins-Donaldson S, Kurtz S, Simoes-Wust AP, Yousefi S, Simon HU et al. Cisplatin activates Akt in small cell lung cancer cells and attenuates apoptosis by survivin upregulation. Int J Cancer 2005; 117: 755–763.

    Article  CAS  Google Scholar 

  32. Sun XP, Dong X, Lin L, Jiang X, Wei Z, Zhai B et al. Up-regulation of survivin by AKT and hypoxia-inducible factor 1alpha contributes to cisplatin resistance in gastric cancer. FEBS J 2014; 281: 115–128.

    Article  CAS  Google Scholar 

  33. Pollack A, Wu CS, Czerniak B, Zagars GK, Benedict WF, McDonnell TJ . Abnormal bcl-2 and pRb expression are independent correlates of radiation response in muscle-invasive bladder cancer. Clin Cancer Res 1997; 3: 1823–1829.

    CAS  PubMed  Google Scholar 

  34. Cote RJ, Esrig D, Groshen S, Jones PA, Skinner DG . p53 and treatment of bladder cancer. Nature 1997; 385: 123–125.

    Article  CAS  Google Scholar 

  35. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014; 25: 152–165.

    Article  CAS  Google Scholar 

  36. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  37. Lai D, Ho KC, Hao Y, Yang X . Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 2011; 71: 2728–2738.

    Article  CAS  Google Scholar 

  38. Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A et al. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 2013; 32: 2220–2229.

    Article  CAS  Google Scholar 

  39. Zhao Y, Khanal P, Savage P, She YM, Cyr TD, Yang X . YAP-induced resistance of cancer cells to antitubulin drugs is modulated by a hippo-independent pathway. Cancer Res 2014; 74: 4493–4503.

    Article  CAS  Google Scholar 

  40. Sheen-Chen SM, Huang CY, Tsai CH, Liu YW, Wu SC, Huang CC et al. Yes-associated protein is not an independent prognostic marker in breast cancer. Anticancer Res 2012; 32: 3321–3325.

    Article  Google Scholar 

  41. Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009; 115: 4576–4585.

    Article  CAS  Google Scholar 

  42. Reichert S, Rodel C, Mirsch J, Harter PN, Tomicic MT, Mittelbronn M et al. Survivin inhibition and DNA double-strand break repair: a molecular mechanism to overcome radioresistance in glioblastoma. Radiother Oncol 2011; 101: 51–58.

    Article  CAS  Google Scholar 

  43. Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res 2009; 69: 3482–3491.

    Article  CAS  Google Scholar 

  44. Tsai HC, Huang CY, Su HL, Tang CH . CCN2 enhances resistance to cisplatin-mediating cell apoptosis in human osteosarcoma. PLoS One 2014; 9: e90159.

    Article  Google Scholar 

  45. Todorovic V, Chen CC, Hay N, Lau LF . The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol 2005; 171: 559–568.

    Article  CAS  Google Scholar 

  46. Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem 2004; 279: 24015–24023.

    Article  CAS  Google Scholar 

  47. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 2014; 111: 3110–3115.

    Article  CAS  Google Scholar 

  48. Jiang N, Hjorth-Jensen K, Hekmat O, Iglesias-Gato D, Kruse T, Wang C et al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene 2014; 34: 2764–2776.

    Article  Google Scholar 

  49. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25: 822–830.

    Article  CAS  Google Scholar 

  50. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25: 831–845.

    Article  CAS  Google Scholar 

  51. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 2012; 180: 599–607.

    Article  CAS  Google Scholar 

  52. Liao W, McNutt MA, Zhu WG . The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 2009; 48: 46–53.

    Article  CAS  Google Scholar 

  53. Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku SY et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther 2014; 14: 101–110.

    Article  Google Scholar 

Download references

Acknowledgements

This study was in part supported by the National Cancer Institute P30 CA016056 (RP), R21 CA179693 (JZ), the American Cancer Society 127226-RSG-14-214-01-TBE (JZ) and a research donation from Richard Di Vita and family (RP). We thank the MTMR and Pathology Core Facilities at Roswell Park Cancer Institute for processing the tissue samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Barrera or R Pili.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

This study was in part previously presented at the 2014 American Association for Cancer Research Annual Meeting.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciamporcero, E., Shen, H., Ramakrishnan, S. et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541–1553 (2016). https://doi.org/10.1038/onc.2015.219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.219

This article is cited by

Search

Quick links