Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer

Subjects

A Correction to this article was published on 19 September 2019

Abstract

Heat-shock protein 5 (HSPA5) is a marker for poor prognosis in breast cancer patients and has an important role in cancer progression, including promoting drug resistance and metastasis. In this study, we identify that the specific lysine residue 447 (K447) of HSPA5 could be modified with polyubiquitin for subsequent degradation through the ubiquitin proteasomal system, leading to the suppression of cell migration and invasion of breast cancer. We further found that GP78, an E3 ubiquitin ligase, interacted with the C-terminal region of HSPA5 and mediated HSPA5 ubiquitination and degradation. Knock down of GP78 significantly increased the expression of HSPA5 and enhanced migration/invasive ability of breast cancer cells. Knock down of histone deacetylase-6 (HDAC6) increased the acetylation of HSPA5 at lysine residues 353 (K353) and reduced GP78-mediated ubiquitination of HSPA5 at K447 and then increased cell migration/invasion. In addition, we demonstrate that E3 ubiquitin ligase GP78 preferentially binds to deacetylated HSPA5. Notably, the expression levels of GP78 inversely correlated with HSPA5 levels in breast cancer patients. Patients with low GP78 expression significantly correlated with invasiveness of breast cancer, advanced tumor stages and poor clinical outcome. Taken together, our results provide new mechanistic insights into the understanding that deacetylation of HSPA5 by HDAC6 facilitates GP78-mediated HSPA5 ubiquitination and suggest that post-translational regulation of HSPA5 protein is critical for HSPA5-mediated metastatic properties of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lee AS . GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 2007; 67: 3496–3499.

    Article  CAS  Google Scholar 

  2. Luo S, Mao C, Lee B, Lee AS . GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006; 26: 5688–5697.

    Article  CAS  Google Scholar 

  3. Wang Q, He Z, Zhang J, Wang Y, Wang T, Tong S et al. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev 2005; 29: 544–551.

    Article  CAS  Google Scholar 

  4. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 2000; 59: 15–26.

    Article  CAS  Google Scholar 

  5. Gazit G, Lu J, Lee AS . De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 1999; 54: 135–146.

    Article  CAS  Google Scholar 

  6. Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 2006; 12: 5987–5993.

    Article  CAS  Google Scholar 

  7. Xing X, Lai M, Wang Y, Xu E, Huang Q . Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta 2006; 364: 308–315.

    Article  CAS  Google Scholar 

  8. Zhang J, Jiang Y, Jia Z, Li Q, Gong W, Wang L et al. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 2006; 23: 401–410.

    Article  Google Scholar 

  9. Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ et al. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol 2010; 17: 1703–1709.

    Article  Google Scholar 

  10. Haga A, Komazaki S, Funasaka T, Hashimoto K, Yokoyama Y, Watanabe H et al. AMF/G6PI induces differentiation of leukemic cells via an unknown receptor that differs from gp78. Leuk Lymphoma 2006; 47: 2234–2243.

    Article  CAS  Google Scholar 

  11. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 2008; 68: 498–505.

    Article  CAS  Google Scholar 

  12. Dong D, Stapleton C, Luo B, Xiong S, Ye W, Zhang Y et al. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Res 2011; 71: 2848–2857.

    Article  CAS  Google Scholar 

  13. Hicke L . A new ticket for entry into budding vesicles-ubiquitin. Cell 2001; 106: 527–530.

    Article  CAS  Google Scholar 

  14. Sommer T, Wolf DH . The ubiquitin-proteasome-system. Biochim Biophys Acta 2014; 1843: 1.

    Article  CAS  Google Scholar 

  15. Deshaies RJ, Joazeiro CA . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78: 399–434.

    Article  CAS  Google Scholar 

  16. Sun Y . E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 2006; 8: 645–654.

    Article  CAS  Google Scholar 

  17. Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM . The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA 2001; 98: 14422–14427.

    Article  CAS  Google Scholar 

  18. Ying Z, Wang H, Fan H, Zhu X, Zhou J, Fei E et al. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum Mol Genet 2009; 18: 4268–4281.

    Article  CAS  Google Scholar 

  19. Joshi B, Li L, Nabi IR . A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J Biol Chem 2010; 285: 8830–8839.

    Article  CAS  Google Scholar 

  20. Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 2007; 13: 1504–1509.

    Article  CAS  Google Scholar 

  21. Hirono Y, Fushida S, Yonemura Y, Yamamoto H, Watanabe H, Raz A . Expression of autocrine motility factor receptor correlates with disease progression in human gastric cancer. Br J Cancer 1996; 74: 2003–2007.

    Article  CAS  Google Scholar 

  22. Jo Y, Debose-Boyd RA . Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 2010; 45: 185–198.

    Article  CAS  Google Scholar 

  23. Minucci S, Pelicci PG . Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38–51.

    Article  CAS  Google Scholar 

  24. Lee AS, Hendershot LM . ER stress and cancer. Cancer Biol Ther 2006; 5: 721–722.

    Article  CAS  Google Scholar 

  25. Chiu CC, Lin CY, Lee LY, Chen YJ, Kuo TF, Chang JT et al. Glucose-regulated protein 78 regulates multiple malignant phenotypes in head and neck cancer and may serve as a molecular target of therapeutic intervention. Mol Cancer Ther 2008; 7: 2788–2797.

    Article  CAS  Google Scholar 

  26. Chang YW, Chen HA, Tseng CF, Hong CC, Ma JT, Hung MC et al. De-acetylation and degradation of HSPA5 is critical for E1A metastasis suppression in breast cancer cells. Oncotarget 2014; 5: 10558–10570.

    PubMed  PubMed Central  Google Scholar 

  27. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005; 18: 601–607.

    Article  CAS  Google Scholar 

  28. Yang Y, Rao R, Shen J, Tang Y, Fiskus W, Nechtman J et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 2008; 68: 4833–4842.

    Article  CAS  Google Scholar 

  29. Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P et al. HDAC6 inhibition enhances 17-AAG—mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 2008; 112: 1886–1893.

    Article  CAS  Google Scholar 

  30. Rao R, Nalluri S, Kolhe R, Yang Y, Fiskus W, Chen J et al. Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol Cancer Ther 2010; 9: 942–952.

    Article  CAS  Google Scholar 

  31. Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM . The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci USA 2006; 103: 341–346.

    Article  CAS  Google Scholar 

  32. Carlsson L, Lazarides E . ADP-ribosylation of the Mr 83,000 stress-inducible and glucose-regulated protein in avian and mammalian cells: modulation by heat shock and glucose starvation. Proc Natl Acad Sci USA 1983; 80: 4664–4668.

    Article  CAS  Google Scholar 

  33. Hendershot LM, Ting J, Lee AS . Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol Cell Biol 1988; 8: 4250–4256.

    Article  CAS  Google Scholar 

  34. Freiden PJ, Gaut JR, Hendershot LM . Interconversion of three differentially modified and assembled forms of BiP. EMBO J 1992; 11: 63–70.

    Article  CAS  Google Scholar 

  35. Satoh M, Nakai A, Sokawa Y, Hirayoshi K, Nagata K . Modulation of the phosphorylation of glucose-regulated protein, GRP78, by transformation and inhibition of glycosylation. Exp Cell Res 1993; 205: 76–83.

    Article  CAS  Google Scholar 

  36. Kundrat L, Regan L . Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J Mol Biol 2010; 395: 587–594.

    Article  CAS  Google Scholar 

  37. Bertrand J, Tennoune N, Marion-Letellier R, Goichon A, Chan P, Mbodji K et al. Evaluation of ubiquitinated proteins by proteomics reveals the role of the ubiquitin proteasome system in the regulation of Grp75 and Grp78 chaperone proteins during intestinal inflammation. Proteomics 2013; 13: 3284–3292.

    Article  CAS  Google Scholar 

  38. Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R et al. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J Proteomics 2012; 75: 2998–3014.

    Article  CAS  Google Scholar 

  39. Lecker SH, Goldberg AL, Mitch WE . Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17: 1807–1819.

    Article  CAS  Google Scholar 

  40. Wang Y, Kim SM, Trnka MJ, Liu Y, Burlingame AL, Correia MA . Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 2015; 290: 3308–3332.

    Article  CAS  Google Scholar 

  41. Wang X, Ma X, Wang H, Li B, Clark G, Guo Y et al. Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol Cell Proteomics 2015; 14: 686–694.

    Article  CAS  Google Scholar 

  42. Song BL, Sever N, DeBose-Boyd RA . Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell 2005; 19: 829–840.

    Article  CAS  Google Scholar 

  43. Liang JS, Kim T, Fang S, Yamaguchi J, Weissman AM, Fisher EA et al. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem 2003; 278: 23984–23988.

    Article  CAS  Google Scholar 

  44. Zhang T, Kho DH, Wang Y, Harazono Y, Nakajima K, Xie Y et al. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One 2015; 10: e0118448.

    Article  Google Scholar 

  45. Floriano-Sanchez E, Rodriguez NC, Bandala C, Coballase-Urrutia E, Lopez-Cruz J . CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. Asian Pac J Cancer Prev 2014; 15: 3805–3809.

    Article  Google Scholar 

  46. Zia H, Murray GI, Vyhlidal CA, Leeder JS, Anwar AE, Bui MM et al. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation. Int J Exp Pathol 2015; 96: 81–86.

    Article  CAS  Google Scholar 

  47. Fujimura T, Takahashi S, Urano T, Tanaka T, Zhang W, Azuma K et al. Clinical significance of steroid and xenobiotic receptor and its targeted gene CYP3A4 in human prostate cancer. Cancer Sci 2012; 103: 176–180.

    Article  CAS  Google Scholar 

  48. Sakurai K, Enomoto K, Matsuo S, Amano S, Shiono M . CYP3A4 expression to predict treatment response to docetaxel for metastasis and recurrence of primary breast cancer. Surg Today 2011; 41: 674–679.

    Article  CAS  Google Scholar 

  49. Schointuch MN, Gilliam TP, Stine JE, Han X, Zhou C, Gehrig PA et al. Simvastatin, an HMG-CoA reductase inhibitor, exhibits anti-metastatic and anti-tumorigenic effects in endometrial cancer. Gynecol Oncol 2014; 134: 346–355.

    Article  CAS  Google Scholar 

  50. His M, Zelek L, Deschasaux M, Pouchieu C, Kesse-Guyot E, Hercberg S et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol 2014; 29: 119–132.

    Article  CAS  Google Scholar 

  51. Fairbank M, St-Pierre P, Nabi IR . The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Mol Biosyst 2009; 5: 793–801.

    Article  CAS  Google Scholar 

  52. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  53. Bassermann F, Eichner R, Pagano M . The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 2014; 1843: 150–162.

    Article  CAS  Google Scholar 

  54. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 2002; 110: 633–641.

    Article  CAS  Google Scholar 

  55. Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012; 149: 1098–1111.

    Article  CAS  Google Scholar 

  56. Fang S, Lorick KL, Jensen JP, Weissman AM . RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin Cancer Biol 2003; 13: 5–14.

    Article  CAS  Google Scholar 

  57. Li M, Yu X . Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 2013; 23: 693–704.

    Article  CAS  Google Scholar 

  58. Hesling C, D'Incan M, D'Incan C, Souteyrand P, Monboisse JC, Pasco S et al. Downregulation of BRCA1 in A375 melanoma cell line increases radio-sensitivity and modifies metastatic and angiogenic gene expression. J Invest Dermatol 2004; 122: 369–380.

    Article  CAS  Google Scholar 

  59. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127: 539–552.

    Article  CAS  Google Scholar 

  60. Wong CS, Moller A . Siah: a promising anticancer target. Cancer Res 2013; 73: 2400–2406.

    Article  CAS  Google Scholar 

  61. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE . Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2011; 10: 29–46.

    Article  CAS  Google Scholar 

  62. Wang Y, Guan S, Acharya P, Liu Y, Thirumaran RK, Brandman R et al. Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction. Mol Cell Proteomics 2012; 11: 010132.

    PubMed  Google Scholar 

  63. McFadyen MC, Melvin WT, Murray GI . Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 2004; 3: 363–371.

    CAS  PubMed  Google Scholar 

  64. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17: 353–360.

    Article  CAS  Google Scholar 

  65. Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH et al. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 2010; 70: 5096–5108.

    Article  CAS  Google Scholar 

  66. Festing MF, Altman DG . Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 2002; 43: 244–258.

    Article  CAS  Google Scholar 

  67. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006; 9: 121–132.

    Article  CAS  Google Scholar 

  68. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  Google Scholar 

  69. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5: 607–616.

    Article  CAS  Google Scholar 

  70. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 2011; 305: 1873–1881.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council grant from Taiwan (NSC 99-2314-B-400-006-MY3, NSC 101-2320-B-400-016-MY3, NSC 102-2314-B-038-028-MY3, NSC 103-2314-B-038-059, MOST 103-2628-B-006-003-MY3); National Health Research Institutes grant from Taiwan (CA-102-PP-41, CA-103-PP-35, CA-104-SP-01, CA-104-PP-12, MOHW104-TDU-B-212-124-008); Ministry of Health and Welfare, Taiwan (DOH101-TD-PB-111-NSC015, DOH 102-TD-C-111-004); and Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare grant from Taiwan (103TMU-SHH-26). We thank Ms Fang-Yu Tsai and Dr I-Shou Chang of Taiwan Bioinformatics Institute Core Facility for assistance on using Oncomine (National Core Facility Program for Biotechnology, NSC-100-2319-B-400-001). We thank Dr Shiu-Feng Huang and Dr Yu-Ting Chiu of National Health Research Institutes pathology core lab for assistance in pathology services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-L Su.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YW., Tseng, CF., Wang, MY. et al. Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 35, 1517–1528 (2016). https://doi.org/10.1038/onc.2015.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.214

This article is cited by

Search

Quick links