Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells

Abstract

β1 Integrin-mediated cell–extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of β1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of β1 integrin targeting on the repair of radiation-induced DNA double-strand breaks (DSBs). β1 Integrin inhibition was accomplished using the monoclonal antibody AIIB2 and experiments were performed in three-dimensional cell cultures and tumor xenografts of human head and neck squamous cell carcinoma (HNSCC) cell lines. AIIB2, X-ray irradiation, small interfering RNA-mediated knockdown and Olaparib treatment were performed and residual DSB number, protein and gene expression, non-homologous end joining (NHEJ) activity as well as clonogenic survival were determined. β1 Integrin targeting impaired repair of radiogenic DSB (γH2AX/53BP1, pDNA-PKcs T2609 foci) in vitro and in vivo and reduced the protein expression of Ku70, Rad50 and Nbs1. Further, we identified Ku70, Ku80 and DNA-PKcs but not poly(ADP-ribose) polymerase (PARP)-1 to reside in the β1 integrin pathway. Intriguingly, combined inhibition of β1 integrin and PARP using Olaparib was significantly more effective than either treatment alone in non-irradiated and irradiated HNSCC cells. Here, we support β1 integrins as potential cancer targets and highlight a regulatory role for β1 integrins in the repair of radiogenic DNA damage via classical NHEJ. Further, the data suggest combined targeting of β1 integrin and PARP as promising approach for radiosensitization of HNSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Klein TJ, Glazer PM . The tumor microenvironment and DNA repair. Semin Radiat Oncol 2010; 20: 282–287.

    Article  Google Scholar 

  3. Almeida EA, Ilić D, Han Q, Hauck CR, Jin F, Kawakatsu H et al. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J Cell Biol 2000; 149: 741–754.

    Article  CAS  Google Scholar 

  4. Hehlgans S, Haase M, Cordes N . Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 2007; 1775: 163–180.

    CAS  Google Scholar 

  5. Jean C, Gravelle P, Fournie JJ, Laurent G . Influence of stress on extracellular matrix and integrin biology. Oncogene 2011; 30: 2697–2706.

    Article  CAS  Google Scholar 

  6. Eke I, Cordes N . Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31C: 65–75.

    Google Scholar 

  7. Eke I, Storch K, Kästner I, Vehlow A, Faethe C, Mueller-Klieser W et al. Three-dimensional invasion of human glioblastoma cells remains unchanged by X-ray and carbon ion irradiation in vitro. Int J Radiat Oncol Biol Phys 2012; 84: e515–e523.

    Article  Google Scholar 

  8. Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M et al. beta(1)Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. J Clin Invest 2012; 122: 1529–1540.

    Article  CAS  Google Scholar 

  9. Park CC, Zhang HJ, Yao ES, Park CJ, Bissell MJ . Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res 2008; 68: 4398–4405.

    Article  CAS  Google Scholar 

  10. Eke I, Storch K, Krause M, Cordes N . Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis. Cancer Res 2013; 73: 5869–5879.

    Article  CAS  Google Scholar 

  11. Eke I, Zscheppang K, Dickreuter E, Hickmann L, Mazzeo E, Unger K et al. Simultaneous beta1 integrin-EGFR targeting and radiosensitization of human head and neck cancer. J Natl Cancer Inst 2015; 107: 419.

    Article  Google Scholar 

  12. Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N . Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One 2007; 2: e269.

    Article  Google Scholar 

  13. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  Google Scholar 

  14. Shibue T, Weinberg RA . Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 2009; 106: 10290–10295.

    Article  CAS  Google Scholar 

  15. Barkan D, Green JE, Chambers AF . Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 2010; 46: 1181–1188.

    Article  CAS  Google Scholar 

  16. Tomar A, Schlaepfer DD . Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 2009; 21: 676–683.

    Article  CAS  Google Scholar 

  17. Hehlgans S, Eke I, Cordes N . Targeting FAK radiosensitizes 3-dimensional grown human HNSCC cells through reduced Akt1 and MEK1/2 signaling. Int J Radiat Oncol Biol Phys 2012; 83: e669–e676.

    Article  CAS  Google Scholar 

  18. Serrels A, McLeod K, Canel M, Kinnaird A, Graham K, Frame MC et al. The role of focal adhesion kinase catalytic activity on the proliferation and migration of squamous cell carcinoma cells. Int J Cancer 2012; 131: 287–297.

    Article  CAS  Google Scholar 

  19. Jean C, Chen XL, Nam JO, Tancioni I, Uryu S, Lawson C et al. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol 2014; 204: 247–263.

    Article  CAS  Google Scholar 

  20. Chapman JR, Taylor MR, Boulton SJ . Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47: 497–510.

    Article  CAS  Google Scholar 

  21. Shrivastav M, De Haro LP, Nickoloff JA . Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18: 134–147.

    Article  CAS  Google Scholar 

  22. Helleday T, Lo J, van Gent DC, Engelward BP . DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 2007; 6: 923–935.

    Article  CAS  Google Scholar 

  23. Mladenov E, Iliakis G . Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711: 61–72.

    Article  CAS  Google Scholar 

  24. Mahaney BL, Meek K, Lees-Miller SP . Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009; 417: 639–650.

    Article  CAS  Google Scholar 

  25. Mansour WY, Rhein T, Dahm-Daphi J . The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38: 6065–6077.

    Article  CAS  Google Scholar 

  26. Kotter A, Cornils K, Borgmann K, Dahm-Daphi J, Petersen C, Dikomey E et al. Inhibition of PARP1-dependent end-joining contributes to Olaparib-mediated radiosensitization in tumor cells. Mol Oncol 2014; 8: 1616–1625.

    Article  Google Scholar 

  27. Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL . Bedford JS. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation. Cancer Res 2002; 62: 6400–6404.

    CAS  Google Scholar 

  28. Vandersickel V, Depuydt J, Van Bockstaele B, Perletti G, Philippe J, Thierens H et al. Early increase of radiation-induced gammaH2AX foci in a human Ku70/80 knockdown cell line characterized by an enhanced radiosensitivity. J Radiat Res 2010; 51: 633–641.

    Article  Google Scholar 

  29. Jones CB, McIntosh J, Huang H, Graytock A, Hoyt DG . Regulation of bleomycin-induced DNA breakage and chromatin structure in lung endothelial cells by integrins and poly(ADP-ribose) polymerase. Mol Pharmacol 2001; 59: 69–75.

    Article  CAS  Google Scholar 

  30. Rose JL, Reeves KC, Likhotvorik RI, Hoyt DG . Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells. J Pharmacol Exp Ther 2007; 321: 318–326.

    Article  CAS  Google Scholar 

  31. Mansour WY, Borgmann K, Petersen C, Dikomey E, Dahm-Daphi J . The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining. DNA Repair (Amst) 2013; 12: 1134–1142.

    Article  CAS  Google Scholar 

  32. Couto CA, Wang HY, Green JC, Kiely R, Siddaway R, Borer C et al. PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Biol 2011; 194: 367–375.

    CAS  Google Scholar 

  33. Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM et al. Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 2010; 285: 1414–1423.

    Article  CAS  Google Scholar 

  34. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca O . Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell 2006; 22: 511–519.

    Article  CAS  Google Scholar 

  35. Williams GJ, Lees-Miller SP, Tainer JA . Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 2010; 9: 1299–1306.

    Article  CAS  Google Scholar 

  36. Cheng Q, Barboule N, Frit P, Gomez D, Bombarde O, Couderc B et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res 2011; 39: 9605–9619.

    Article  CAS  Google Scholar 

  37. Helleday T, Bryant HE, Schultz N . Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle 2005; 4: 1176–1178.

    Article  CAS  Google Scholar 

  38. Tutt AN, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM et al. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb Symp Quant Biol 2005; 70: 139–148.

    Article  CAS  Google Scholar 

  39. Chan N, Bristow RG . "Contextual" synthetic lethality and/or loss of heterozygosity: tumor hypoxia and modification of DNA repair. Clin Cancer Res 2010; 16: 4553–4560.

    Article  CAS  Google Scholar 

  40. Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 2010; 70: 8045–8054.

    Article  CAS  Google Scholar 

  41. Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res 2010; 70: 3925–3934.

    Article  CAS  Google Scholar 

  42. Albert M, Schmidt M, Cordes N, Dorr W . Modulation of radiation-induced oral mucositis (mouse) by selective inhibition of beta1 integrin. Radiother Oncol 2012; 104: 230–234.

    Article  CAS  Google Scholar 

  43. Hehlgans S, Lange I, Eke I, Cordes N . 3D cell cultures of human head and neck squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor TAE226. Radiother Oncol 2009; 92: 371–378.

    Article  CAS  Google Scholar 

  44. Kumareswaran R, Ludkovski O, Meng A, Sykes J, Pintilie M, Bristow RG . Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci 2012; 125: 189–199.

    Article  CAS  Google Scholar 

  45. Eke I, Schneider L, Förster C, Zips D, Kunz-Schughart LA, Cordes N . EGFR/JIP-4/JNK2 signaling attenuates cetuximab-mediated radiosensitization of squamous cell carcinoma cells. Cancer Res 2012; 73: 297–306.

    Article  Google Scholar 

  46. Yan H, Zhang B, Li S, Zhao Q . A formal model for analyzing drug combination effects and its application in TNF-alpha-induced NFkappaB pathway. BMC Syst Biol 2010; 4: 50.

    Article  Google Scholar 

  47. Borgmann K, Dede M, Wrona A, Brammer I, Overgaard J, Dikomey E . For X-irradiated normal human fibroblasts, only half of cell inactivation results from chromosomal damage. Int J Radiat Oncol Biol Phys 2004; 58: 445–452.

    Article  CAS  Google Scholar 

  48. Bennardo N, Cheng A, Huang N, Stark JM . Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 2008; 4: e1000110.

    Article  Google Scholar 

  49. Krajewska M, Heijink AM, Bisselink YJ, Seinstra RI, Silljé HH, de Vries EG et al. Forced activation of Cdk1 via wee1 inhibition impairs homologous recombination. Oncogene 2013; 32: 3001–3008.

    Article  CAS  Google Scholar 

  50. Krause M, Prager J, Zhou X, Yaromina A, Dörfler A, Eicheler W et al. EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: differential response of cancer stem cells and nontumourigenic cells? Radiother Oncol 2007; 83: 316–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research and authors were funded in part by the Deutsche Krebshilfe e.V. (108976 to N.C.) and the EFRE Europäische Fonds für regionale Entwicklung, Europa fördert Sachsen (100066308). We are grateful to R Grenman for providing HNSCC cell lines, DD Schlaepfer for providing mouse FAK cDNA and J Stark for providing NHEJ reporter plasmids. We further thank I Lange for performing real-time PCR experiments, L Stolz-Kieslich and A Zielinski for technical assistance and I Kurth for help with FACS analysis. We appreciate critical reading of the manuscript by E Hammond and A Vehlow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Cordes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickreuter, E., Eke, I., Krause, M. et al. Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 35, 1353–1362 (2016). https://doi.org/10.1038/onc.2015.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.212

This article is cited by

Search

Quick links